Stable Diffusion|用AI制作电商产品视觉

今天分享一个用Stable Diffusion制作“电商视觉海报”和“电商产品视觉”的小分享,随着双十一的到来,这个分享或许可以给你提供一些创作灵感,也有可能可以帮助你更高效的完成视觉海报的制作。

1

双十一视觉

在开始之前,需要先准备一张双十一的字体图片。

(图片来自网络,如有侵权,请联系我删除,谢谢)

1. 打开Stable Diffusion,将双十一的字体图片上传上去,然后启动“ControlNet”,并且勾选“完美像素”模式。

2. 控制类型选择“Canny”,然后“控制权重”可以稍微调整一下,想让双十一字体更明确一些就将控制权重调高,如果不要那么明确就调低或者保持默认就可以。

3. 设置好“ControlNet”之后,选择一个模型,这里推荐使用“revAnimated”这个模型,它比较通用。然后输入正向提示词和反向提示词。

这里我使用了两个Lora模型一个是“3D电商模型V1”,另一个是“光效科幻场景”,这两个模型都可以在“liblib”模型站上下载。(在这里感谢两位模型作者的分享,谢谢!)

4. 设置生成参数,尺寸建议设置成和ControlNet的那张参考图同样的尺寸比例,然后其他的可以根据自己的需求设置。

5. 设置完成后,点击“生成”即可。

2

电商产品视觉

开始之前需要先准备一张透明背景,或者纯色背景的产品图片。

(图片来自网络,如有侵权,请联系我删除,谢谢)

1. 打开Stable Diffusion,选择一个模型,这里推荐使用“revAnimated”这个模型,它比较通用。然后输入正向提示词和反向提示词,先生成一张电商场景图。

这里我使用了一个电商场景Lora模型“电商场景PLUS”,这个模型可以在“liblib”模型站上下载(在这里感谢这位模型作者的分享,谢谢!)

2. 设置生成参数,这里可以根据自己的需求设置。

3. 点击“生成”,可以多生成几次,然后挑选一张自己满意的场景图。

4. 场景生成完成之后,将图片保存下来,然后用“PS”或者其他的图片编辑工具将产品图和场景图合并在一起。

5. 打开Stable Diffusion,将合并好后的产品图片上传到图生图。

6. 设置生成参数,尺寸建议和原图片一样的大小或比例,然后“重绘幅度”建议调整到0.5左右。

7. 设置ControlNet,在“ControlNet Unit 0”,启用并勾选“完美像素模式”,然后控制类似选择“Lineart”这里也可以选择“Canny”这两个都可以。

8. 在“ControlNet Unit 1”,启用并勾选“完美像素模式”,然后控制类似选择“Depth”。

9. 设置好以上参数之后,选择一个模型,然后输入正向提示词和反向提示词(这里用生成场景的模型和提示词就可以),然后点击“生成”即可。

我们可以看到产品很好的融入到了场景里面,但是还是会有一些细节上的东西需要用“PS”或其他图片处理工具在处理一下。

3

最后

以上是对使用Stable Diffusion进行电商产品视觉制作的分享。虽然目前AI生成的图片仍需要使用第三方图片处理工具进行二次处理,但这已经极大地提高了我们的工作效率。

写在最后

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除
### Stable Diffusion 模型在电商平台的应用实例 Stable Diffusion (SD) 是一种强大的生成式模型,能够创建高质量的图像。这种能力使得 SD 成为了电子商务平台的理想工具之一,尤其是在产品图片生成、虚拟试穿以及个性化推荐等方面。 #### 应用于商品图片自动生成 通过利用 stable diffusion 技术,商家可以根据已有产品的描述或其他特征来自动生成新的产品展示图。这不仅可以节省大量的人力成本,而且还能快速响应市场变化,及时更新库存中的新品视觉资料[^1]。 例如,在服装类目下,企业可以输入特定款式、颜色组合等参数给到预训练好的 stable diffusion model 中去,从而获得一张张逼真的衣服效果图。这种方式特别适合那些拥有众多SKU(Stock Keeping Unit)却难以拍摄每一件实物照片的小型企业或个人卖家。 ```python from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler scheduler = EulerDiscreteScheduler.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", scheduler=scheduler) prompt = "A red dress with lace details" image = pipe(prompt).images[0] # Save the generated image to file system. image.save("./red_dress.png") ``` 此代码片段展示了如何使用 Hugging Face 提供的 `diffusers` 库来加载并运行一个简单的文本转图像任务,这里是以“带有蕾丝细节的红色连衣裙”的提示为例生成了一幅图像。 #### 虚拟试穿体验增强购物乐趣 除了静态的商品渲染外,一些先进的电商网站已经开始尝试将 AR/VR 和 AI 结合起来提供更加沉浸式的购物流程——即所谓的“虚拟试穿”。借助于 stable diffusion 可以为用户提供高度定制化的外观模拟效果,使顾客能够在购买前更好地了解自己穿上某件物品后的样子。 对于美妆类产品而言,则可以通过上传用户的面部照片作为条件输入至网络中,进而预测不同化妆品涂抹之后的效果;而对于服饰来说则会涉及到人体姿态估计与衣物变形等多个复杂环节的技术支持。 #### 数据驱动下的精准营销策略制定 最后值得一提的是,当积累足够多的历史交易记录后,还可以进一步挖掘其中蕴含的价值信息用来指导未来的经营决策。比如分析哪些风格更受欢迎?什么季节应该重点推广哪一类别的货品?等等这些问题都可以通过对海量数据集的学习找到答案。而在这个过程中,stable diffusion 预训练模型同样扮演着重要角色因为它可以帮助我们更快捷高效地处理各种类型的多媒体素材,并从中提取有用的知识点出来辅助商业智能系统的构建与发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值