Stable Diffusion【ControlNet】:tile模型实现图片风格转换

在前面的章节Stable Diffusion【ControlNet】:改善画质细节的tile模型我们了解了Tile模型在修复改善图片画质方面的应用,今天我们来看一下另一个重要的功能,实现图片风格的转换。今天我们主要以实现二维草图转三维实物来体验一下具体应用。

我们先看一下效果图。

二维草图

三维实物

我们可以添加提示词,补充图片画面元素

添加提示词:在雪中

添加提示词:被鲜花环绕

一. Tile模型实现风格转换

【第一步】:ControlNet的设置

相关参数设置如下:

  • 控制类型:选择"Tile/Blur"

  • 预处理器:tile_resample

  • 模型:control_xxx_tile

  • 控制权重 : 设置为1

  • 控制模式:选择"更偏向提示词"

【第二步】:提示词的编写

我们可以根据画面的内容简单地写一下提示词。

best quality,masterpiece,ultra detailed,finely detail,intricate details,high resolution,8K,UHD,

a beautiful house,trees,

如果图片比较复杂,可以借助Tagger工具反推出提示词。

相关参数设置

  • 采样器:DPM++ 2M Karras

  • 采样迭代步数:30

  • 图片宽高:1024*768,我这里原图片宽高是821*461,这里最好对图片进行等比例放大。最好保证宽高的设置都在512以上。

  • 生成数量:2,一次多生成几张,提高抽签概率

【第三步】大模型的选择以及图片的生成

这里我们使用一些通用的写实模型即可。我这里使用的是DreamShaper 8。可以结合自己的图片特点选择对应的大模型。

点击【生成】按钮,最终生成的图片效果如下。

我们再添加一下提示词,添加一些画面元素。

提示词:a beautiful house,trees,in the snow

8

提示词:a beautiful house,trees,maple leaves in autumn,

三. Tile模型与线条模型的对比

上面的二维草图也可以通过线条模型来达到同样的效果。

Lineart模型

我们看一下不同提示词下生成图片的效果。

提示词:a beautiful house,trees,

提示词:a beautiful house,trees,in the snow

提示词:a beautiful house,trees,maple leaves in autumn,

Canny模型

我们看一下不同提示词下生成图片的效果。

提示词:a beautiful house,trees,

提示词:a beautiful house,trees,in the snow

提示词:a beautiful house,trees,maple leaves in autumn,

从tile模型与线条模型Lineart和Canny生成的图片效果来看。

(1)Canny还原原图片的效果最好,这个也是因为Canny模型可以识别图片中最多的线条,可以实现最大程度地还原照片。其次是Lineart线条模型,适用于不同类型图片的线稿提取。最后是tile模型,因为tile模型实现机制先忽略掉照片的一些细节,再加上一些细节,会导致图片和原图片出入稍微有些大。

(2)tile模型不属于线条模型,它的主要作用是保持图片的整体布局基础上给照片添加细节,正是由于可以保存图片的整体布局,所以也可以实现类似线条模型的实现效果,可以在原图片的基础上进行创意地发挥完善图片的细节。

(3)在实际的使用过程中,对图片的加工处理可以不用太局限于一种实现方式,可以结合多种不同实现方式对比看一下效果。

四. 相关说明

在上面的实例中,ControlNet的控制模式选择的是"更偏向提示词",如果我们选择的是默认选项"均衡"。tile模型的生成的图片效果如下,相比原图片元素要丰富一些,但是图片的颜色会发生变化。

好了,今天的分享就到这里了,希望今天分享的内容对大家有所帮助。

写在最后

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除
stable diffusion controlnet是一个用于网络技术的源码,它主要用于实现网络中的扩散控制功能。扩散控制是指通过调整网络节点之间的通信速率,以实现网络资源的平衡利用和避免网络拥塞的技术。 源码分析是指对该源码进行深入的研究和解析。 首先,stable diffusion controlnet的源码可以从开源社区或者相关的资源库中获取。我们首先需要对源码进行编译和构建,确保可以成功地在我们的环境中运行。 然后,我们可以对源码的结构进行分析。通常,源码会包含多个文件和目录,其中主要包括各种类、函数和变量的定义和实现。我们需要仔细阅读每个文件和目录的功能和作用,了解它们之间的关联和调用关系。 在阅读源码的过程中,我们可以关注以下几点: 1. 网络扩散控制算法:源码中会实现网络扩散控制的核心算法。我们需要了解算法的原理和实现方式,以及它如何根据网络环境的变化来动态地调整节点之间的通信速率。 2. 数据结构:源码中通常会定义一些数据结构,用于存储和处理网络中的节点信息、拓扑结构和通信状态。我们需要了解这些数据结构的定义和使用方式,以及它们在算法中的作用。 3. 调度和控制逻辑:源码中可能会包含一些调度和控制逻辑,用于管理网络中各个节点的通信行为。我们需要分析这些逻辑的实现方式和策略,了解它们如何协调和控制节点之间的通信行为,以保证网络资源的平衡利用和避免拥塞。 4. 代码的可读性和健壮性:除了功能实现外,源码的可读性和健壮性也是需要关注的。我们可以评估源码的编码规范、注释和错误处理机制等方面,以确保代码的可维护性和稳定性。 总之,通过对stable diffusion controlnet源码的分析,我们可以深入了解网络扩散控制技术的实现方式和原理,为实际应用和二次开发提供参考和指导。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值