【ComfyUI教程】SD3.5:ControlNet重磅发布!激烈竞争能否夺回黑森林Flux高地?

SD3.5:ControlNet来袭

Stable Diffusion 3.5 Large ControlNet模型简介

今天Stability AI如约按照之前Stable Diffusion 3.5 Large模型发布时候的承诺,在SD3.5发布不到1个月时间再次发布了SD3.5 Large模型的ControlNet模型。同时当前ComfyUI也增加了对新的Stable Diffusion 3.5 Large ControlNet模型的支持。本次发布ControlNet模型共有3款,分别为:BlurCannyDepth。这3款模型都是各自拥有80亿参数,并且遵循宽松的Stability AI社区许可证,这些模型是可以在商业和非商业用途下免费使用。另外,官方也提到,Stable Diffusion 3.5 Medium (2B)变体和新的控制类型在内的额外ControlNet模型也即将推出!

  • Blur模型:能够实现极高保真度的放大,包括8K和16K分辨率,非常适合将低分辨率图像平铺成大型详细视觉效果。

  • Canny模型:利用Canny线稿边缘图来构建生成的图像结构,这种控制类型特别适合插画、建筑等场景,并且可以适应所有风格。

  • Depth模型:使用DepthFM生成的深度图来引导图像生成,非常适合纹理3D主体等需要精确控制图像构图的场景。

题外话,在本次SD3.5 Large模型的ControlNet模型是在黑森林团队发布Flux ControlNet模型不到一周时间发布了SD3.5的ControlNet模型。在文生图的领域两家领头开源产厂商开始卷起来,SD3.5也在费力追赶当前Flux模型几乎占领文生图开源社区的局面。只有当lux模型具有较大的挑战,Flux1.1-Dev或其他更好的变体模型开源发布。

SD3.5 Large ControlNet模型 ComfyUI体验

首先需要更新最新的ComfyUI本体到最新版本,在最新ComfyUI中已原生支持了SD3.5 Large ControlNet模型。另外还需要下载额外的ControlNet模型(模型文末可获取)。

  • all-in-one SD3.5 large模型:下载SD3.5模型并放置到ComfyUI/models/checkpoints目录下,下载地址:https://huggingface.co/Comfy-Org/stable-diffusion-3.5-fp8/resolve/main/sd3.5_large_fp8_scaled.safetensors

  • SD3.5 Large ControlNet模型:下载SD3.5ControlNet模型并放置到ComfyUI/models/controlnet目录下。下载地址:https://huggingface.co/stabilityai/stable-diffusion-3.5-controlnets/tree/main

SD3.5文生图工作流

LIBLIB平台已在线支持SD3.5在线工作流体验,笔者上传了支持Joy1反推+SD3.5工作流地址:https://www.liblib.art/modelinfo/fb42d5cdd58644a2b28e86e2cfd28ac0?versionUuid=1189e755690f41dc933861cc9bc0c824

另外LIBLIBAI已支持本地客户端使用可首页(https://www.liblib.art)下载体验。

SD3.5 Large ControlNet模型工作流

SD3.5 Large ControlNet模型工作流已上传LIBLIB平台:

![](https://i-blog.csdnimg.cn/img_convert/3ab631c6f5691f4d177131cfebcdd985.png)

01. Blur高清-小黄鸭

高清质量表现很不错。

This is a digital photograph capturing a whimsical scene of a yellow rubber duck riding a wave. The duck, positioned centrally in the image, appears to be surfing the crest of a greenish-blue wave. The background features a stunning sunset with hues of orange, pink, and purple blending into the sky. The water reflects the warm colors of the sunset, adding to the serene and playful atmosphere. The overall effect is both surreal and heartwarming, blending the innocence of a toy with the grandeur of nature.


在这里插入图片描述

02.Canny线稿-建筑

Oriental architectural design,townhouses,80's houses,lawns,green trees


在这里插入图片描述

03.Canny线稿-线稿上色

cute anime girl , red long hair blue eyes wearing a blue sweater, Indoors


在这里插入图片描述

04.Canny线稿-写实

This is a CGI image of a majestic Bengal tiger with a striking, realistic texture. The tiger is mid-flight, wings spread wide, showcasing detailed feathers in shades of brown and black. Its fur is vivid orange with black stripes, and its piercing blue eyes are focused forward. The background features a dense, misty forest with tall, blurred trees, creating a sense of depth and motion. The overall composition combines elements of fantasy and realism, highlighting the tiger's grace and power.

05.Depth深度-人物

SD3.5的肢体处理仍然是老问题。

1girl , Asian woman, blonde long hair blue eyes wearing a pink sweater, Indoors, sit on the edge of the bed

网盘模型获取扫下图👇:

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除

### 关于Stable Diffusion 3.5 ComfyUIControlNet 的集成与使用 #### 背景介绍 Stable Diffusion 是一种基于深度学习的图像生成模型,其最新版本 SD3.5 提供了更高质量的图像生成能力以及更高的性能优化。ComfyUI 是一个模块化的界面工具,允许用户通过节点编辑器的方式构建复杂的生成流程[^1]。ControlNet 则是一种增强型插件,能够利用额外的信息(如边缘检测、姿态估计等)来引导扩散过程,从而实现更加精确的控制。 #### 集成方式概述 在 ComfyUI 中集成了 ControlNet 插件后,可以显著提升图像生成的质量和可控性。具体来说,ControlNet 可以接受多种类型的条件输入(例如草图、线稿、语义分割图),并将这些信息作为附加特征传递给 Stable Diffusion 模型。这种机制使得生成的结果不仅遵循文本提示词的要求,还能满足特定视觉结构的需求[^2]。 #### 使用方法详解 以下是有关如何配置并运行带有 ControlNet 支持的 ComfyUI 流程的具体说明: 1. **安装依赖项** 确保已正确安装最新的 ComfyUI 版本及其对应的 ControlNet 扩展包。可以通过官方文档或者社区资源获取必要的脚本文件,并按照指示完成环境搭建。 2. **加载预训练权重** 下载适用于目标任务的 ControlNet 权重文件(通常为 `.ckpt` 或 `.safetensors` 格式)。对于某些特殊应用场景可能还需要额外下载专用处理器(processor)组件。 3. **设计工作流** 在 ComfyUI 的图形化界面上创建一个新的项目工程,拖拽所需的节点到画布上形成连接关系。主要涉及以下几个核心部分: - 输入端设置:定义初始参数包括分辨率大小、种子值随机数等等; - 主体逻辑链路:依次串联起 Text Encoder -> CLIP Model -> UNET Network 这些基础单元; - 辅助功能扩展:引入 Condition Generator (用于处理来自外部源的数据信号),并通过 Merge Node 将两者融合起来共同指导后续迭代计算步骤; 4. **执行推理操作** 设置好所有必要选项之后点击 Run 开始实际运算过程,在此期间可以根据进度条观察当前状态直至最终输出成品图片为止。 ```python from diffusers import StableDiffusionInpaintPipeline, ControlNetModel controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") pipeline = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet) result_image = pipeline(prompt="A fantasy landscape with mountains and rivers", image=input_image, mask_image=mask).images[0] result_image.save('output.png') ``` 上述代码片段展示了如何初始化包含 Canny 边缘检测算法支持的 ControlNet 实例并与标准版 Stable Diffusion Inpainting Pipeline 结合使用的例子。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值