树的遍历(前序 / 中序 / 后序)

一、概念说明

在二叉树(Binary Tree)中,遍历是指按照某种顺序访问树中每个节点一次且仅一次

三种经典的深度优先遍历(DFS)方式是:

遍历方式访问顺序特点与应用场景
前序遍历根 → 左 → 右常用于复制树、构建前缀表达式等
中序遍历左 → 根 → 右用于获取有序序列(如二叉搜索树)
后序遍历左 → 右 → 根常用于释放内存、构建后缀表达式等

二、图示与举例

示例二叉树结构如下:

      A
     / \
    B   C
   / \   \
  D   E   F

✅ 1. 前序遍历(Pre-order)

  • 顺序:根 → 左子树 → 右子树

  • 示例输出:

    A → B → D → E → C → F
    

✅ 2. 中序遍历(In-order)

  • 顺序:左子树 → 根 → 右子树

  • 示例输出:

    D → B → E → A → C → F
    

✅ 3. 后序遍历(Post-order)

  • 顺序:左子树 → 右子树 → 根

  • 示例输出:

    D → E → B → F → C → A
    

三、遍历的递归实现(C++)

假设有如下结构体:

struct TreeNode {
    char val;
    TreeNode* left;
    TreeNode* right;
    TreeNode(char x) : val(x), left(nullptr), right(nullptr) {}
};

🌟 前序遍历

void preorder(TreeNode* root) {
    if (!root) return;
    cout << root->val << " ";
    preorder(root->left);
    preorder(root->right);
}

🌟 中序遍历

void inorder(TreeNode* root) {
    if (!root) return;
    inorder(root->left);
    cout << root->val << " ";
    inorder(root->right);
}

🌟 后序遍历

void postorder(TreeNode* root) {
    if (!root) return;
    postorder(root->left);
    postorder(root->right);
    cout << root->val << " ";
}

四、非递归(迭代)实现核心思想

前序遍历(借助栈)

void preorderIterative(TreeNode* root) {
    stack<TreeNode*> s;
    if (root) s.push(root);
    while (!s.empty()) {
        TreeNode* node = s.top(); s.pop();
        cout << node->val << " ";
        if (node->right) s.push(node->right);
        if (node->left) s.push(node->left);
    }
}

中序遍历(借助栈)

void inorderIterative(TreeNode* root) {
    stack<TreeNode*> s;
    TreeNode* curr = root;
    while (curr || !s.empty()) {
        while (curr) {
            s.push(curr);
            curr = curr->left;
        }
        curr = s.top(); s.pop();
        cout << curr->val << " ";
        curr = curr->right;
    }
}

后序遍历(双栈实现)

void postorderIterative(TreeNode* root) {
    if (!root) return;
    stack<TreeNode*> s1, s2;
    s1.push(root);
    while (!s1.empty()) {
        TreeNode* node = s1.top(); s1.pop();
        s2.push(node);
        if (node->left) s1.push(node->left);
        if (node->right) s1.push(node->right);
    }
    while (!s2.empty()) {
        cout << s2.top()->val << " ";
        s2.pop();
    }
}

五、应用场景举例

遍历方式应用场景
前序遍历构建树、序列化、拷贝、构建前缀表达式
中序遍历获取有序结果(二叉搜索树)、表达式求值
后序遍历释放内存、删除树、构建后缀表达式

六、记忆方法

一句话记忆:

  • 前序:「我先说(根),然后左看看,再右看看」
  • 中序:「我先左看看,再说话(根),再右看看」
  • 后序:「我把两边(左、右)看完,最后才说话(根)」
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值