【NOIP】数的划分
题目描述
将整数n分成k份,且每份不能为空,任意两个方案不相同(不考虑顺序)。
例如:n=7,k=3,下面三种分法被认为是相同的。
1,1,5;
1,5,1;
5,1,1.
问有多少种不同的分法。
输入格式
n,k (6<n≤200,2≤k≤6)
输出格式
1个整数,即不同的分法。
输入输出样例
输入 #1 复制
7 3
输出 #1 复制
4
说明/提示
四种分法为:
1,1,5;
1,2,4;
1,3,3;
2,2,3.
分析
这道题可以看成一道背包题,f【k】【n】:把k看成是k个盘子,n是n个水果,题目要求是每个盘子里都必须不能为空,
那可以把题分解为
1 --至少有个盘子 只有一个水果, 和 2 --所有盘子都至少有二个水果 。
因为这两个子问题是 相互独立的,两个子问题的所有情况 相加起来就是这个大问题的答案了。。。。。
问题 : f【k】【n】 = 子问题1 + 子问题2;
现在看子问题 1–,
如果有k个盘子 ,刚好只有k个水果,这时只有一种情况 那就是每个盘都有一个水果,那么 f【k】【n】=1;(k==n)
如果有k个盘子,有很多的水果,我们假设前面k-1个盘子都是多于1个水果,那么最后一个盘子 必然就对应一个水果
因为是必然,只有这种情况,(否则就不符合问题1-- 嘛)。所以分法和f【k-1】【n-1】是一样的。
(如果还不懂,就模拟下,现在我把最后一个盘子和最后一个水果 去掉,那么就有 f【k-1】【n-1】种分法,再把最后一个盘子和水果加上去,也是只有一种情况,就是最后一个盘子放最后一个水果所以不会产生多的情况)
那么 f【k】【n】 = f【k-1】【n-1】 + 子问题2;
现在看子问题 2–,
所有的盘子都至少有2个水果,那么把每个盘子中拿出来一个水果,对应 f【k】【n-k】;这时f【k】【n-k】的分法情况
就是这个子问题2-- 的分法情况了,(如果不懂,模拟下, f【k】【n-k】 不管他怎么样放水果, 子问题2–都是在所有盘的基础上都再放一个水果,就是说 ,还是只有这一种情况。所以【k】【n-k】的分法情况就是这个子问题2-- 的分法情况了 )
那么 f【k】【n】=f【k-1】【n-1】 + f【k】【n-k】;
应该很明朗了吧。。。。。ok收工。。
代码
#include<iostream>
using namespace std;
// 至少有一份是1 + 每份至少有2 或以上
//f[i][j] = f[i-1][j-1] +f[i][j-i];
int n,k;
int f[205][205];
int main(){
cin>>n>>k;
for(int i=1;i<=k;i++){
for(int j=1;j<=n;j++){
if(i ==j){ //只能每份都放 1
f[i][j] = 1;
}
if(j>i){
f[i][j] = f[i-1][j-1] + f[i][j-i];
}
}
}
cout<<f[k][n];
return 0;
}