【NOIP】数的划分

5 篇文章 0 订阅

【NOIP】数的划分

题目

题目描述

将整数n分成k份,且每份不能为空,任意两个方案不相同(不考虑顺序)。

例如:n=7,k=3,下面三种分法被认为是相同的。

1,1,5;
1,5,1;
5,1,1.

问有多少种不同的分法。

输入格式

n,k (6<n≤200,2≤k≤6)

输出格式

1个整数,即不同的分法。

输入输出样例

输入 #1 复制
7 3
输出 #1 复制
4

说明/提示

四种分法为:
1,1,5;
1,2,4;
1,3,3;
2,2,3.

分析

这道题可以看成一道背包题,f【k】【n】:把k看成是k个盘子,n是n个水果,题目要求是每个盘子里都必须不能为空,
那可以把题分解为
1 --至少有个盘子 只有一个水果, 和 2 --所有盘子都至少有二个水果 。
因为这两个子问题是 相互独立的,两个子问题的所有情况 相加起来就是这个大问题的答案了。。。。。
问题 : f【k】【n】 = 子问题1 + 子问题2;

现在看子问题 1–,
如果有k个盘子 ,刚好只有k个水果,这时只有一种情况 那就是每个盘都有一个水果,那么 f【k】【n】=1;(k==n)
如果有k个盘子,有很多的水果,我们假设前面k-1个盘子都是多于1个水果,那么最后一个盘子 必然就对应一个水果
因为是必然,只有这种情况,(否则就不符合问题1-- 嘛)。所以分法和f【k-1】【n-1】是一样的。
(如果还不懂,就模拟下,现在我把最后一个盘子和最后一个水果 去掉,那么就有 f【k-1】【n-1】种分法,再把最后一个盘子和水果加上去,也是只有一种情况,就是最后一个盘子放最后一个水果所以不会产生多的情况)
那么 f【k】【n】 = f【k-1】【n-1】 + 子问题2;

现在看子问题 2–,

所有的盘子都至少有2个水果,那么把每个盘子中拿出来一个水果,对应 f【k】【n-k】;这时f【k】【n-k】的分法情况
就是这个子问题2-- 的分法情况了,(如果不懂,模拟下, f【k】【n-k】 不管他怎么样放水果, 子问题2–都是在所有盘的基础上都再放一个水果,就是说 ,还是只有这一种情况。所以【k】【n-k】的分法情况就是这个子问题2-- 的分法情况了 )
那么 f【k】【n】=f【k-1】【n-1】 + f【k】【n-k】;

应该很明朗了吧。。。。。ok收工。。

代码

#include<iostream>

using namespace std;
//			至少有一份是1   + 每份至少有2 或以上
//f[i][j] = f[i-1][j-1] +f[i][j-i];


int  n,k;

int f[205][205];

int main(){
	cin>>n>>k;
	for(int i=1;i<=k;i++){
		for(int j=1;j<=n;j++){
			
			if(i ==j){				//只能每份都放 1  
				f[i][j] = 1;
			}
			if(j>i){
				f[i][j] = f[i-1][j-1] + f[i][j-i];
			}
			
		} 
	}
	cout<<f[k][n];
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值