今天刷PAT不太顺利,这次这套题很简单,前三个通过率低的题都很快一遍过了,后两个写出来就始终被卡在一个测试点上,菜哭。
##1062. 最简分数(20)
时间限制
400 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
CHEN, Yue
一个分数一般写成两个整数相除的形式:N/M,其中M不为0。最简分数是指分子和分母没有公约数的分数表示形式。
现给定两个不相等的正分数 N1/M1 和 N2/M2,要求你按从小到大的顺序列出它们之间分母为K的最简分数。
输入格式:
输入在一行中按N/M的格式给出两个正分数,随后是一个正整数分母K,其间以空格分隔。题目保证给出的所有整数都不超过1000。
输出格式:
在一行中按N/M的格式列出两个给定分数之间分母为K的所有最简分数,按从小到大的顺序,其间以1个空格分隔。行首尾不得有多余空格。题目保证至少有1个输出。
输入样例:
7/18 13/20 12
输出样例:
5/12 7/12
思想就是暴力枚举。因为是要最简分数,所有加上GCD(最大公约数)判断即可,卡的地方在于题目中没说第一个分数一定小于第二个,所以要加一行判断,否则第二个测试点过不去。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
int gcd(int m,int n)//求最大公约数
{
int da,xiao;
if(m>n)
{
da=m;
xiao=n;
}
else
{
da=n;
xiao=m;
}
while(xiao)
{
int tem=da%xiao;
da=xiao;
xiao=tem;
}
if(da==1)return 0;//互质的情况
else return 1;
}
int main()
{
double n1,m1,n2,m2,k;
double result[1010]={0};
int j=0;
scanf("%lf/%lf %lf/%lf %lf",&n1,&m1,&n2,&m2,&k);
double x=n1/m1,y=n2/m2;
if(x>y)swap(x,y);//题目没有保证前面的分数大于后面
for(double i=1;i<=k;i++)//枚举
{
double tem=i/k;
if(tem>x&&tem<y)//在范围内
{
if(!gcd(i,k))//互质,即最简
{
result[j++]=i;
}
}
}
sort(result,result+j);//升序
for(int i=0;i<j-1;i++)
cout<<result[i]<<'/'<<k<<' ';
cout<<result[j-1]<<'/'<<k<<endl;
}
当然GCD函数有很多种写法,我写的是自己最拿手的一种版本。