tensorflow和keras使用cpu进行基于卷积神经网络的图像分类

本文介绍了如何使用TensorFlow和Keras在CPU上进行基于卷积神经网络的猫狗图像分类。通过环境搭建、数据集准备、模型构建、过拟合解释、数据增强、VGG16优化,详细阐述了训练过程。在数据增强后,模型的准确率显著提高,避免了过拟合,最终在测试集上取得了86%~87%的准确率。
摘要由CSDN通过智能技术生成

TensorFlow环境搭建

TensorFlow安装参考:
https://www.cnblogs.com/HongjianChen/p/8385547.html.
首先建立一个名为TensorFlow的environment
在这里插入图片描述
在这里插入图片描述
建立TensorFlow环境后,下载TensorFlow和keras
在这里插入图片描述
在这里插入图片描述
然后打开anaconda 进入TensorFlow环境下载jupyter
在这里插入图片描述
进入anaconda prompt 使用activate tensorflow进入tensorflow环境,然后cd/d xxx(自己的jupyter notebook路径)到该路径下后,输入jupyter notebook打开jupyter,就可以运行程序了。
在这里插入图片描述

猫狗数据集下载准备

可以通过网盘下载:https://pan.baidu.com/s/13hw4LK8ihR6-6-8mpjLKDA . 密码:dmp4

使用原始数据集直接训练

导入库和数据集

可以检测你的tensorflow和keras是否安装完成

import keras
keras.__version__
import os, shutil

在这里插入图片描述
首先准备数据集,将下载的train文件路径添加进去,而catdog文件夹是程序会自动创建的文件夹名称。程序是将猫和狗的图片分开,并将其分为训练集和验证集。

original_dataset_dir = 'F:\\Anaconda\\jupyter-notebook\\cats and dogs\\train\\train'

# The directory where we will
# store our smaller dataset
base_dir = 'F:\\Anaconda\\jupyter-notebook\\catdog'
os.mkdir(base_dir)

# Directories for our training,
# validation and test splits
train_dir = os.path.join(base_dir, 'train')
os.mkdir(train_dir)
validation_dir = os.path.join(base_dir, 'validation')
os.mkdir(validation_dir)
test_dir = os.path.join(base_dir, 'test')
os.mkdir(test_dir)

# Directory with our training cat pictures
train_cats_dir = os.path.join(train_dir, 'cats')
os.mkdir(train_cats_dir)

# Directory with our training dog pictures
train_dogs_dir = os.path.join(train_dir, 'dogs')
os.mkdir(train_dogs_dir)

# Directory with our validation cat pictures
validation_cats_dir = os.path.join(validation_dir, 'cats')
os.mkdir(validation_cats_dir)

# Directory with our validation dog pictures
validation_dogs_dir = os.path.join(validation_dir, 'dogs')
os.mkdir(validation_dogs_dir)

# Directory with our validation cat pictures
test_cats_dir = os.path.join(test_dir, 'cats')
os.mkdir(test_cats_dir)

# Directory with our validation dog pictures
test_dogs_dir = os.path.join(test_dir, 'dogs')
os.mkdir(test_dogs_dir)

# Copy first 1000 cat images to train_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(train_cats_dir, fname)
    shutil.copyfile(src, dst)

# Copy next 500 cat images to validation_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(validation_cats_dir, fname)
    shutil.copyfile(src, dst)
    
# Copy next 500 cat images to test_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1500, 2000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(test_cats_dir, fname)
    shutil.copyfile(src, dst)
    
# Copy first 1000 dog images to train_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.joi
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值