线性回归是我们中学课本中学的最基础的概念之一,用于建立变量之间线性关系的统计方法;
在简单线性回归中,会建立一个因变量与一个自变量之间的线性关系模型。
我们可以用 PyTorch 来实现一些简单的线性回归实践。
房价预测
数据准备
首先准备一些数据来训练型:使用一个简单的示例数据集,其中包含了房屋面积和对应的房价。
ini
复制代码
import numpy as np
# 生成示例数据
np.random.seed(42)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)
数据可视化
再来可视化一下数据,可以更直观展示关系:
dart
复制代码
import matplotlib.pyplot as plt
plt.scatter(X, y)
plt.xlabel('House Size')
plt.ylabel('Price')
plt.title('House Price vs. Size')
plt.show()
PyTorch构建模型
使用 PyTorch 来构建线性回归模型。
ini
复制代码
import torch
import torch.nn as nn
# 将数据转换为PyTorch张量
X_tensor = torch.from_numpy(X).float()
y_tensor = torch.from_numpy(y).float()
# 定义线性回归模型
class LinearRegression(nn.Module):
def __init__(self, input_dim, output_dim):
super(LinearRegression, self).__init__()
self.linear = nn.Linear(input_dim, output_dim)
def forward(self, x):
return self.linear(x)
# 初始化模型
input_dim = 1
output_dim = 1
model = LinearRegression(input_dim, output_dim)
# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
模型训练
然后用数据来训练模型
ini
复制代码
# 定义训练参数
num_epochs = 100
# 训练模型
for epoch in range(num_epochs):
# 向前传播
outputs = model(X_tensor)
loss = criterion(outputs, y_tensor)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch+1) % 10 == 0:
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
可视化结果
scss
复制代码
# 可视化训练结果
predicted = model(X_tensor).detach().numpy()
plt.scatter(X, y, label='Original data')
plt.plot(X, predicted, label='Fitted line', color='red')
plt.xlabel('House Size')
plt.ylabel('Price')
plt.title('House Price vs. Size (Prediction)')
plt.legend()
plt.show()
预测测试
最后,我们就可以用训练好的模型来进行预测了:预测新数据:
lua
复制代码
# 预测新数据
new_house_size = 5
predicted_price = model(torch.tensor([[new_house_size]]).float()).item()
print("Predicted price for a house with size {}: ${:.2f}".format(new_house_size, predicted_price))
运行
上 Pycharm:(咸鱼有1元购破解码)
散点图展示了原始数据
拟合线图新增拟合线
OK,上述代码用PyTorch实现的简单线性回归模型,用于预测房屋价格:
根据一组房屋尺寸和对应价格的数据,然后用散点图展示了数据分布。接着构建了一个线性回归模型,并用训练数据对其进行训练,最小化预测值与真实值的误差。
训练完毕后,将模型预测的房价与原始数据一起绘制在图上,直观地观察模型的拟合效果。
最终用训练好的模型对新的房屋尺寸进行预测,得到其对应的价格;
小结
PyTorch 学习中会有很多如线性回归这样的数学算法图,可以很直观的展示训练结果;数学不愧是科学之王冠。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取==🆓