只需三步,手把手带你在本地部署运行大模型

在当前的技术环境下,大型语言模型(LLMs)已经成为人工智能领域的一个重要里程碑。这些模型能够在各种任务上展现出人类水平的性能,包括但不限于文本生成、语言理解和问题解答。随着开源项目的发展,个人开发者现在有机会在本地部署这些强大的模型,以探索和利用它们的潜力。本文将详细介绍如何使用Ollama,一个开源项目,在Mac上本地运行大型模型(Win同理)。通过遵循以下步骤,即使是配备了几年前硬件的电脑,也能够顺利完成部署和运行。

开源项目ollama:github链接

第一步:下载和安装Ollama

image.png

  • 下载完成后,双击解压软件,您将看到应用安装界面,如下图所示::

第二步:下载模型并运行 mistral-7b 大模型

  • 打开终端,输入命令ollama run mistral以启动Ollama并下载所需的大型模型,下图显示了mistral-7b模型的下载过程,

image.png

  • 下载完成后,您可以像下图所示运行Ollama,并询问例如“why sky id blue?”的问题,以测试模型的响应:

image.png

第三步:设置前端界面和Docker环境

perl
复制代码
git clone https://github.com/open-webui/open-webui.git
  • 使用以下命令下载并运行Docker镜像,为Ollama设置一个前端界面:
kotlin
复制代码
cd open-webui
docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main
  • 打开浏览器,输入网址http://localhost:3000/,选择您刚下载的模型mistral:latest (3.8GB),即可开始探索大型模型的强大功能。

image.png 此外,对于那些关注电脑配置的用户,以下是一个配置示例,表明即使是老旧的电脑也能够运行这些大型模型,本指南使用的电脑配置如图

通过遵循这个指南,任何拥有基本计算机技能的用户都可以在本地部署和运行大型模型,进一步探索人工智能的前沿技术。这不仅为开发者提供了一个实验和学习的平台,也为研究人员和爱好者提供了一个探索AI模型潜力的机会。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

在这里插入图片描述

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取==🆓

在这里插入图片描述

<think>嗯,用户想了解ROS中的代价地图的实现与使用方法。首先,我需要回顾一下ROS中代价地图的基本概念,确保自己理解正确。根据之前提供的引用资料,代价地图分为全局和局部两种,用于导航时动态更新障碍物信息。比如引用[2]提到,代价地图在静态地图基础上添加辅助信息,实时更新,这对机器人导航至关重要。 接下来,用户可能需要知道具体的实现结构。引用[1]中提到了Costmap2DROS类,它是与ROS其他模块的接口,负责更新和发布代价地图。里面有一个重要的成员layered_costmap_,这说明代价地图是分层的。需要解释这些层次结构,比如静态层、障碍物层、膨胀层等,引用[3]也提到三层地图组成,所以这部分要详细说明。 然后,关于如何使用,用户可能需要配置参数,比如在ROS的配置文件中设置各层的参数。例如,引用[2]中的案例提到了prohibition_layer插件,这说明用户可以自定义层次。需要给出具体的配置示例,比如YAML文件的参数设置,以及如何加载这些参数到节点中。 代码示例部分,用户可能想看到如何启动代价地图,比如初始化Costmap2DROS对象,并设置各个层。引用[1]中的代码片段显示layered_costmap_是protected成员,所以可能需要通过构造函数或其他方法来配置。此外,发布地图到rviz的步骤也很重要,用户需要知道如何可视化结果。 关于自定义层,用户可能对如何编写插件感兴趣。引用[2]提到了prohibition_layer的例子,可以简要说明如何继承CostmapLayer类,并实现必要的函数,如updateBounds和updateCosts。这部分需要指导用户如何编译和注册插件,以便ROS能够识别。 最后,用户可能需要常见问题的解决方法,比如性能优化或地图更新问题。引用[3]提到恢复行为,可能与代价地图的更新策略有关。需要给出一些实际建议,如调整更新频率或裁剪区域,以优化系统性能。 总结起来,回答应该分结构实现、配置方法、使用步骤、自定义开发和常见问题几个部分,每个部分结合引用资料中的具体信息,确保准确性和实用性。同时,生成的相关问题需要引导用户深入理解,比如实现原理、优化策略和应用场景等。</think>### ROS代价地图实现与使用详解 #### 一、核心实现结构 1. **分层架构**:代价地图通过$layered\_costmap\_$实现多层叠加,包含静态层、障碍物层、膨胀层等[^1][^2] ```cpp // 典型层次结构初始化代码 layered_costmap_->addLayer(new StaticLayer()); layered_costmap_->addLayer(new ObstacleLayer()); layered_costmap_->addLayer(new InflationLayer()); ``` 2. **双重地图模式**: - **全局代价地图**:用于全局路径规划,分辨率较低(默认0.05m) - **局部代价地图**:用于局部避障,分辨率较高(默认0.01m)[^3] 3. **动态更新机制**: ```python # 更新循环伪代码 while ros::ok(): updateMap() publishCostmap() sleep(update_frequency) ``` #### 二、基础配置方法 1. **参数文件配置**(以局部代价地图为例): ```yaml local_costmap: plugins: - {name: static_layer, type: "costmap_2d::StaticLayer"} - {name: obstacle_layer, type: "costmap_2d::ObstacleLayer"} - {name: inflation_layer, type: "costmap_2d::InflationLayer"} update_frequency: 5.0 publish_frequency: 2.0 ``` 2. **可视化调试**: ```bash roslaunch turtlebot3_navigation turtlebot3_navigation.launch # 在Rviz中添加Costmap显示 ``` #### 三、核心使用流程 1. **初始化代价地图**: ```cpp costmap_2d::Costmap2DROS local_costmap("local_costmap", tf_); costmap_2d::Costmap2DROS global_costmap("global_costmap", tf_); ``` 2. **访问代价数据**: ```cpp unsigned char cost = local_costmap.getCostmap()->getCost(mx, my); ``` 3. **坐标转换示例**: ```cpp geometry_msgs::PointStamped world_point; costmap->getCostmap()->mapToWorld(mx, my, world_point.point.x, world_point.point.y); ``` #### 四、自定义层开发 1. **创建插件模板**: ```cpp class ProhibitionLayer : public costmap_2d::CostmapLayer { public: virtual void updateBounds(double robot_x, double robot_y, double* min_x, double* min_y, double* max_x, double* max_y); virtual void updateCosts(costmap_2d::Costmap2D& master_grid, int min_i, int min_j, int max_i, int max_j); }; ``` 2. **注册插件**: ```xml <library path="lib/libprohibition_layer"> <class name="costmap_2d/ProhibitionLayer" type="costmap_2d::ProhibitionLayer" base_class_type="costmap_2d::Layer"/> </library> ``` #### 五、典型问题处理 1. **地图更新延迟**: - 检查传感器数据频率是否匹配$update\_frequency$参数 - 验证tf树的时间同步性 2. **性能优化**: ```yaml obstacle_layer: combination_method: 1 # 使用最大值覆盖策略 obstacle_keep_time: 2.0 # 减少障碍物保留时间 inflation_layer: inflation_radius: 0.5 # 适当缩小膨胀半径 ``` 3. **特殊区域处理**: ```cpp // 设置禁止区域示例 addExtraBounds(prohibition_area.min_x, prohibition_area.min_y, prohibition_area.max_x, prohibition_area.max_y); ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值