2025 年,人工智能依然是科技圈最热的风口。ChatGPT、Claude、DeepSeek 等模型层出不穷,不断刷新人们对 AI 能力的想象。而支撑这一切的,正是大语言模型(LLM)——这个曾经只是大厂的专属!
但问题来了:构建一个属于自己的大模型,真的非得依赖大团队、大算力、大预算不可吗?
其实未必!
Build a Large Language Model (From Scratch) 这本书,正在彻底打破这个思维定式。作者不仅深入讲解了 LLM 的理论和未来,更是在用一套极具操作性的工程路线图,告诉你:即使只有一台普通笔记本,也能从零开始训练一个 LLM。
这本书一上线就引发了全球开发者的广泛关注——GitHub 上斩获 43.7k 星标,Amazon 美区评分高达 4.7 分。
作者塞巴斯蒂安·拉施卡(Sebastian Raschka)也早就是技术社区里的“红人”了。他的视频教程在 YouTube 上被无数 AI 爱好者点赞收藏,评论区常常出现“看完我就上手了”“原来训练大模型没那么遥不可及”这样的反馈。
不少人看完作者视频教程的学习者,立刻动手实践,甚至已经训练出了属于自己的“小模型”,并在 Hugging Face 上部署 Demo,开源代码,分享日志。
在 YouTube、Twitter 等平台上,#TrainYourOwnLLM 的话题持续升温,评论区几乎被“我居然真的训出来了!”刷屏。可以说,这本书不只是一本讲方法论的工具书,更像是一次大模型开发的行动指南。
它让 LLM 不再高高在上,而是真正进入了普通开发者的工具箱里。
如果你曾幻想过用自己的代码构建一个大模型,如果你想真正理解 GPT、DeepSeek 等模型背后的运行逻辑,如果你厌倦了只会“调用接口”而不知其所以然——那这本书,可能正是你一直在等的那一本。
封面上有一个公爵夫人,很好辨认,而且这本的内容独一无二!
这本书到底讲了啥?
这是一本注重实战、内容透彻的 LLM 入门书。作者手把手带你亲手构建、训练、微调一个属于自己的大模型。从数据准备到预训练,从指令微调到模型部署,每一步都讲得清清楚楚,还配有代码、示意图,手把手带你实现。
另外,作者还在中文版里首次新增了有关 DeepSeek 的深度解析,让读者能够学到最前沿的技术!
🔹 从零开始:自己动手构建模型架构!
🔹 模型训练:教你如何准备数据、搭建训练管道,并优化模型效果!
🔹 让 LLM 更聪明:微调、加载预训练权重,让你的 LLM 适应不同任务!
🔹 人类反馈微调(RLHF):让 LLM 学会理解指令,避免胡言乱语!
🔹 轻量级开发:一台普通笔记本就能跑,告别「算力焦虑」!
(本书内容要点导图)
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓