【AI工作流】Ollama本地化大模型安装

为了给以后的工作流和本地模型铺路,有必要说一下Ollama本地大语言后台的安装。

1.Ollama

在安装之前,有必要先说明一下Ollama是什么。

Ollama是一个大语言模型的服务后台,能够在零基础的前提下帮助用户轻松部署大语言模型。

其特点包括如下:

优点:Ollama后台服务能够帮助用户轻松搭建大语言模型服务,并且提供相应的API以扩展到其他如Dify等Web前台以及Obsidian等笔记软件,以最快的速度形成AI问答/AGENT/工作流等工作形式。并且Ollama提供模型免费下载,用户可以直接下载多种主流的开源大语言模型。同时Ollama支持不同系统,如windows、Linux、MacOS等

缺点:对于部分特殊的开源模型不支持/未收录,模型数量较大,用户需结合自己的需求自行分辨大语言模型的特点。

从多种角度来说,Ollama是目前最为快速、最方便的本地化大语言模型后台

2.Ollama的安装

2.1 下载Ollama

在下载前需要注意:

1、Windows系统需要在Windows10以上系统;

2、如果想要跑7b以上模型,建议显存在6g以上,内存16g以上,以独立显卡为佳,显卡以Nvidia为佳,非独立显卡将会用CPU来跑,速度会慢一大截。

Ollama下载地址为:

https://ollama.com

打开页面后出现官网,点击Download下载:

点击下载后即可下载对应的Ollama程序。下载完毕后双击一路下一步即可运行。

2.2 查看安装是否成功

如果安装成功,Ollama会出现在右下角:

出现这个图标即代表Ollama安装成功。

打开浏览器,并输入

http://127.0.0.1:11434

http://localhost:11434

如果显示出一行小字则代表Ollama服务运行成功。

2.3 Ollama模型下载路径相关设置

如果不想你的C盘因为下载大模型(很多都是几G到十几G甚至几十G)被占用太多空间,那么可以做如下设置,如果无所谓可忽略本条操作:

点击windows开始按钮或者直接点开开始菜单,选择设置,或者直接按下Windows快捷键win+i打开设置:

在搜索中输入系统变量

在弹出的窗口中选择环境变量,然后在新窗口中的用户变量中点新建,在弹出的小窗口中输入

变量名:

OLLAMA_MODELS

变量值:

(你想要存放大语言模型的路径,举例说明:我想把模型存放在E盘Github code文件夹下的OLLAMAMODEL这个文件夹中,那么变量值就输入如下)

E:\Github code\OLLAMAMODEL

点击确定,这个新变量会出现在你的用户变量中。

至于OLLAMA_HOST这个变量,在某种程度上对于Docker部署前台是不利的,所以不建议设置。

3.试运行Ollama

提前说明:如果上述操作成功,但以下操作未成功,需要重启一下电脑。

3.1 Ollama试运行(非大模型运行)

对电脑的windows按钮点右键,选择终端管理员/终端,当然win+r输入cmd启动命令提示符亦可,但是建议使用管理员权限:

在打开的黑色窗口中输入ollama,然后回车,如果出现下面的内容则表示服务正常:

如需插图图片、视频、小程序卡片、代码块,去微信后台弄更方便。

3.2 Ollama模型选择

进入Ollama的模型图书馆找找模型:

https://ollama.com/library

但是这个时候你肯定不知道应该搜索什么模型,也不知道自己的业务场景想法,所以这里推荐如下模型:

Qwen2:通义千问2大模型,对中文的支持能力非常不错,是我个人认为通用型中文开源模型中做的相当好的,配置一般的电脑推荐使用1.5B模型(CPU跑),7B模型(独立显卡较好)。至于更大的72B模型如果显卡能力不佳不建议尝试。

deepseek-coder-v2:如果你是程序员,那么deepseekV2一定是非常适合你的,deepseekV2用的MoE架构,反应速度不错,支持多种编程语言,可以理解为一个非常好的编程助手模型。

Phi3:微软的小模型,运行速度非常快,对空间占用很小,运行效果尚可,满足机器硬件不足的电脑本地跑模型。但是因为模型太小了,对于输入和输出能力效果是非常有限的。不过对于Phi3的中模型,我们可以收回以上的话,不过主语料是英文,所以中文能力一般。

以上是Phi3中模型截图

Llama3.1:目前最新的Llama模型,推荐使用8b模型,或者8b对应的量化模型(速度可以很快)。如果你的常用语言是中文,llama3.1可能并不是最适合你的。

command-r和command-r-plus:Command-r系列是我个人非常喜欢的一个大模型,在之前的9.8和9.11谁更大的问题上,是唯一一个回****答正确的大模型,并且模型非常规整,非常适合作为企业大模型使用。但是模型比较大,尤其是command-r+,104b的体量不是一般普通显卡能消受的,对硬件要求比较高。这个公司也出了很好的大模型aya,也是很好的作为性格赋予的数字人模型。

llava:一个非常推荐的多模态大模型,可以识别图片并进行输出,但是对中文支持很差,所以推荐使用llava的变体llava-llama3,对语言支持性更好。

bge-large和bge-m3:一个embeddings知识库压缩模型,并不是用于输出文字的,而是用于知识库压缩的,尤其是对中文文本支持能力较好,属于特殊的大模型。bge-m3是bge最新的模型。

3.3 Ollama模型下载

对于喜欢的大模型,选择对应的大模型,右边会自动出现运行的命令,点击右边的复制按钮,这里以最近被自媒体炒得很凶的llama3.1模型为例:

然后在黑色窗口中点右键复制到运行栏中并回车:

等待下载完成,有进度条,这个时间视网速而定。

下载完成后会自动运行(已经下载的将会直接运行,例如下面):

这里可以直接输入问题并回车,即可得到答案:

4.结语

至此Ollama已经成功部署到你的电脑本地了

在后面的过程中将会介绍以Ollama作为核心展开个人知识库的建设。

由于开源大模型在持续更新,对语言大模型的需要用户根据自己的业务场景和需求进行判断。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

### 如何集成开源大模型与本地知识库进行部署和应用 #### 选择合适的硬件环境 为了确保高效运行,建议评估现有硬件资源并确认其满足高性能推理的需求。如果硬件条件允许,则可以选择将模型直接部署到本地服务器,并通过API接口进行访问和调用[^1]。 #### 准备必要的软件工具链 对于具体的实现方案之一是采用Ollama+MaxKB的方式来进行本地化部署工作流。这不仅能够有效利用现有的基础设施,还提供了灵活的数据管理和查询功能来支持复杂的应用需求[^2]。 #### 构建数据管道连接外部源至内部存储系统 构建稳定可靠的数据传输机制至关重要;它负责从各种异构平台抓取结构化或非结构化的原始素材,并经过清洗转换后存入预先设计好的数据库架构之中。此过程可能涉及到ETL(Extract, Transform, Load)作业以及实时同步服务的设计开发。 #### 实现智能化检索增强用户体验交互流程 当完成了上述准备工作之后,下一步就是围绕着这些积累起来的知识资产去创造价值——即让机器理解人类意图并通过自然语言处理技术给出精准的回答反馈给最终用户群体。这里可以引入预训练的语言模型作为核心组件,在此基础上微调优化使其更贴合特定领域内的语义特征表达方式。 ```python from transformers import pipeline # 加载预训练的大规模语言模型 nlp = pipeline('question-answering', model='distilbert-base-cased-distilled-squad') def query_knowledge_base(question): context = "这里是来自本地知识库的相关文档片段..." # 假设已经实现了获取上下文逻辑 result = nlp({ 'question': question, 'context': context }) return f"答案:{result['answer']}" print(query_knowledge_base("什么是人工智能?")) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值