选择离线部署的原因:原计划是打算直接使用 1Panel 进行 MaxKB 和 Ollama 一键部署的,但是两者都会出现 Docker 远程拉取镜像超时的问题,于是选择了离线部署。
一、MaxKB 的离线部署
先下载对应的 MaxKB 离线安装包 :开源社区 - FIT2CLOUD 飞致云
将安装包上传到机器上后 执行以下命令进行安装包的解压和安装
# 解压
tar -zxvf maxkb-v1.2.0-offline.tar.gz
# 进入安装包解压缩后目录
cd maxkb-v1.2.0-offline
# 执行安装命令即可
bash install.sh
参考网址 :离线安装 - MaxKB 文档
ps 也可运行以下命令可以成功拉取镜像并运行容器
docker run -d --name=maxkb -p 8080:8080 -v ~/.maxkb:/var/lib/postgresql/data cr2.fit2cloud.com/1panel/maxkb
二、部署 Ollama
执行命令
curl -fsSL https://ollama.com/install.sh | sh
参考 : GitHub - ollama/ollama: Get up and running with Llama 3.3, DeepSeek-R1, Phi-4, Gemma 3, Mistral Small 3.1 and other large language models. (上面提供各类操作系统的安装指导)
执行成功后会出现以下图样:
其中红框显示的是当前部署的 Ollama 的 API 调用地址
可以执行一下命令查看 Ollama 当前的状态
#安装好后查看当前 Ollama 下拥有的模型(由于当前还没有拉取,所以目录为空)
[root@iZ7xvigag1tcx13yaa7cmhZ opt]# ollama list
NAME ID SIZE MODIFIED
#查看当前 Ollama 的版本
[root@iZ7xvigag1tcx13yaa7cmhZ opt]# ollama -v
Ollama version is 0.3.3
#Ollama 的运行状态
[root@iZ7xvigag1tcx13yaa7cmhZ opt]# systemctl status ollama
● ollama.service - Ollama Service
Loaded: loaded (/etc/systemd/system/ollama.service; enabled; vendor preset: disabled)
Active: active (running) since Sun 2024-08-04 01:02:47 CST; 36min ago
Main PID: 14453 (ollama)
Tasks: 10
Memory: 999.3M
最后将 Ollama 的 API 调用地址填写到MaxKB的配置 Ollama 模型 API 域名的位置
这里要特别注意:
如果直接填写上图中的 127.0.0.1 的路径,点击添加会出现 API 域名无效的提示,以下是当时遇到该问题的解决过程:
先验证当前 Ollama 的 API 是可以访问的
[root@iZ7xvigag1tcx13yaa7cmhZ opt]# curl http://127.0.0.1:11434/
Ollama is running
然后进入 /etc/systemd/system 目录 修改 ollama.service 文件
[root@iZ7xvigag1tcx13yaa7cmhZ opt]# cd /etc/systemd/system/
将其中的 Environment="PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/root/bin"
改为 Environment="OLLAMA_HOST=0.0.0.0"
修改其监听地址为 0.0.0.0
#重启加载配置文件及重启 Ollama
[root@iZ7xvigag1tcx13yaa7cmhZ system]# sudo systemctl daemon-reload
[root@iZ7xvigag1tcx13yaa7cmhZ system]# sudo systemctl restart ollama
#进入 MaxKB 的 Docker 容器中测试是否可以根据该地址访问到 Ollama
[root@iZ7xvigag1tcx13yaa7cmhZ system]# docker exec -it maxkb bash
root@f5be799b5776:/opt/maxkb/app# curl http://ip:11434/ (这里的 IP 是本机对应的ip地址,可以通过命令 ip addr 查询)
Ollama is runningroot@f5be799b5776:/opt/maxkb/app#
出现 Ollama is running 即可
然后将该地址配置到 API 域名上即可
解决方法参考:MaxKB 对接Ollama模型时,提示 API 域名不可用 - #20,来自 xin.bai - MaxKB - 社区论坛 - FIT2CLOUD 飞致云 (在 MaxKB 论坛中发现)
由于本次部署仅尝试整个部署流程,未配置独显,所以大部分独显的大模型是无法运行的。机器配置为 2C4G,有问题或者疑问欢迎一起讨论~
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓