自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(76)
  • 资源 (71)
  • 收藏
  • 关注

原创 数据可视化 | Violin Plot小提琴图Python实现 数据分布密度可视化科研图表

本文介绍了小提琴图(Violin Plot)在数据可视化中的优势及实现方法。小提琴图结合了箱线图和核密度估计,能全面展示数据分布、统计摘要和概率密度,特别适用于多组数据对比。文章详细讲解了小提琴图的理论基础,包括核密度估计算法和统计意义,并提供了Python实现代码,涵盖环境配置、核心类设计及可视化参数设置。通过ViolinPlotGenerator类,用户可生成基础、分组等类型的小提琴图,并自定义样式、颜色和统计元素(中位数、均值等),满足科研和学术发表需求。

2025-09-28 21:41:18 869

原创 数据可视化 | 热力图Heatmap绘制Python代码 相关性矩阵学术可视化

热力图是一种直观展示矩阵数据的可视化工具,特别适用于显示相关性矩阵。本文介绍了热力图的理论基础,包括Pearson相关系数计算、颜色映射选择原则,并提供了Python实现代码。通过HeatmapVisualizer类可以生成多种热力图样式,支持数据分析、聚类展示等功能。文章还详细讲解了如何配置绘图环境、生成模拟数据,并对相关性矩阵进行统计分析。该方法可直接应用于科研论文中的数据可视化,帮助研究者快速识别数据模式和变量间关系。核心代码已实现基础热力图、Seaborn风格热力图等常见类型,支持高分辨率输出和学术

2025-09-28 21:27:24 1285

原创 报错解决 TypeError: _native_multi_head_attention(): argument ‘qkv_bias‘ (position 7) must be Tensor, not

检查环境torch版本2.0.0,建议版本2.1.0。报错解决,不知道谁给我把环境改了。

2024-09-21 15:45:56 381

原创 报错解决 import torch_scatter导致Segmentation fault (core dumped)

跑代码发现会Segmentation fault (core dumped),最后定位到是import torch_scatter导致的,但卸载torch_scatter重装也没解决。一番折腾后意识到我刚改过gcc环境,可能这个包是要重新编译的。编译时间比较久,需要等待一下。重装后问题成功解决。

2024-09-18 23:24:11 508

原创 报错解决 gcc: fatal error: cannot execute ‘cc1plus‘: execvp: No such file or directory

跑代码遇到报错重新运行,报错解决!

2024-07-26 14:55:12 4848 4

原创 报错解决 Failed to load library libonnxruntime_providers_tensorrt.so with error: libnvinfer.so.8

所以可以猜测是 Python 的 tensorrt 库的版本问题。但重新运行程序发现报错还是没有解决,根据网上资料将路径加入。搜了网上的教程没用,检查了一下。重新运行,报错解决。

2024-07-03 11:06:47 3218

原创 TypeError: expected str, bytes or os.PathLike object, not NoneType 报错解决

观察发现,似乎是下面这句代码查找。

2024-06-06 11:18:06 3076

原创 PyQt6实战 | 绘图画板程序 自由绘制 直线 矩形 椭圆 画笔颜色和大小选择

通过本文,我们学习了如何使用 PyQt6 创建一个简单的绘图应用程序。该应用程序实现了基本的绘图功能,并提供了友好的用户界面。希望这能为你进一步开发更复杂的绘图应用程序提供一些启发。

2024-05-28 07:27:35 993 1

原创 使用OverPy API批量获取OpenStreetMap(OSM)城市路网png图片和svg矢量图

在地理信息系统(GIS)和数据可视化领域,获取城市路网的图像对于分析和展示城市交通结构至关重要。OpenStreetMap (OSM) 是一个免费且开放的地理数据源,而OverPy 是一个用于访问OSM数据的Python库。本文将详细介绍如何使用OverPy API批量获取多个城市的路网数据,并生成PNG图片和SVG矢量图。

2024-05-16 02:37:18 1250

原创 报错解决 ValueError: Module {key} is not a LoRACompatibleConv or LoRACompatibleLinear module.

【代码】报错解决 ValueError: Module {key} is not a LoRACompatibleConv or LoRACompatibleLinear module.

2024-05-13 11:29:37 619

原创 报错解决 AttributeError: partially initialized module ‘wx‘ has no attribute ‘__version__‘

跑代码在我试着单独import wx。

2024-05-08 10:23:52 499

原创 TypeError: Image.__init__() got an unexpected keyword argument ‘tool‘

这是gradio的Image模块里报错了,看着像是版本问题。,发现最新版本4.19.2里已经移除了tool,而3.50.2里是有的。看一下版本,我装的是4.19.2。

2024-02-28 10:34:40 3224

原创 深度学习实战 | 卷积神经网络LeNet手写数字识别(带手写板GUI界面)

本文将介绍如何使用LeNet卷积神经网络实现手写数字识别,并使用Pytorch实现LeNet手写数字识别,使用PyQt5实现手写板GUI界面,使用户能够通过手写板输入数字并进行识别。通过本文的实践,你可以学到如何使用LeNet卷积神经网络实现手写数字识别,以及如何结合GUI开发一个手写板界面,更直观地进行数字识别交互。这个例子中,用户可以在手写板上写数字,点击识别按钮后,程序将手写板上的数字送入LeNet模型进行识别,并在界面上显示识别结果。

2024-02-04 00:11:33 3449 1

原创 报错解决方法 ImportError: cannot import name ‘ConvBNReLU‘ from ‘torchvision.models.mobilenetv2‘

可以看出这是 torch 版本更新时希望把模块的 norm 和 act 变得更灵活而做出的修改。这个是torch版本问题,新版修改了API,只需要将。

2023-12-09 19:11:04 2214 3

原创 pip install mpi4py报错:ERROR: Could not build wheels for mpi4py, which is required to install pyprojec

在 conda 环境下 `pip install mpi4py` 安装 mpi4py 库时出现编译报错,报错信息为:line 301: x86_64-conda_cos6-linux-gnu-cc: command not found

2022-10-05 21:11:23 20709 17

原创 pix2pix/CycleGAN生成图片上有像破洞的伪影 参考解决方法

之前训练pix2pix和CycleGAN就经常遇到这个问题,不知道怎么回事。最近又在用pix2pix又发现这个问题,看百度上没有网友有相关解答,就去github的pix2pix官方库搜了一下issues,结果还真找到有网友反馈了。链接如下:Black Artefacts (Holes) in translated images · Issue #725 · junyanz_pytorch-CycleGAN-and-pix2pix总的来说网友总结的经验就是,这种破洞伪影应该属于一种模式奔溃,如果遇到出现这种情

2022-06-26 22:46:15 2441 2

原创 KeyError: “Unable to open object (object ‘xxxx‘ doesn‘t exist) 解决方法

使用 h5py 读取文件时遇到报错:如果遇到这个问题,首先要确定的是你的路径中是否包含中文。如果有,请把你的路径中的中文去掉或者把项目移到没有中文的路径。很多开源库由于对路径中 utf-8 字符支持不完善会出现这个问题,像 opencv-python 到现在也没修复这个问题,h5py 也一样。这提醒我们作为编程者,在文件夹命名时要避免使用中文命名,以避免不必要的报错和调试。因为像这种报错如果你没有查阅到相关资料,可能好几天都很难找到错误在哪。...

2022-06-26 09:01:12 4582

原创 ImportError: DLL load failed while importing win32gui: 找不到指定的程序。解决方法

升级了win11之后,我发现pywin32无法使用了。明明已经安装了pywin32,但每次import win32gui都会提示这个报错:搜了一下也没有网友提供解决方法,于是上官网去找终于找到了,亲测有效:在 Python 中安装 pywin32 库安装完成后找到自己的 Python 根目录,在该目录下打开命令行。比如我使用的时 conda 的环境,目录是 ,我就在命令行中 到这个目录,然后 。如果是普通的 Python 就不用 这步了。在命令行中输入:执行后问题即可解决。......

2022-06-18 23:06:14 6288 8

原创 Python将本机设置为NTP服务器代码 修改Windows注册表 服务和防火墙

在电脑连接网络相机时,需要将连接的电脑本机作为 NTP 时钟源,才能使网络相机同步到时间。主要需要下面三个步骤:Python 代码可以实现该功能,具体代码如下:

2022-06-08 23:47:37 709

原创 PyQt5缺少QtWebEngineWidgets解决方法 QWebEngineView浏览器框

需要用PyQt做个简单的网页浏览器,根据教程操作时发现我的PyQt里没有QtWebEngineWidgets。查阅相关资料之后发现这个库在 的时候不会安装,需要另外补充安装:安装后既可解决这个问题

2022-06-05 20:45:04 13593 1

原创 OSError: [WinError 126] 找不到指定的模块 FileNotFoundError: Could not find module ‘xxx.dll‘. 解决方法

运行别人发给我的程序,遇到用ctypes引用dll文件的地方报错了:python3.5下报错是:OSError: [WinError 126] 找不到指定的模块python3.9下报错是:FileNotFoundError: Could not find module 'xxx.dll'. Try using the full path with constructor syntax.都是一个意思,就是找不到指定的dll文件。但是我很确定我路径是对的,它就在我的文件夹根目录下。(这里需要注意,

2022-05-07 01:46:28 3982 1

原创 VideoWriter_fourcc常见编码格式速度和大小对比总结 OpenCV VideoWriter

用Python写视频录制程序,由于对实时性要求比较高,所以我对各个视频编码格式的保存耗时做了测试,结果如下:扩展名VideoWriter_fourcc编码格式单帧耗时(s)文件大小.avi*‘I420’YUV0.3189巨大.avi*‘PIM1’MPEG-1低于5帧无法使用,未测小.avi*‘XVID’MPEG-40.3785小.mp4*‘MP4V’MPEG-40.4071小.mp4*‘MP42’MPEG-4.20.3

2022-02-19 11:58:28 7137

原创 name = STXingkai/OT, rootname = STXingkai/OT LaTex Package fontspec Error报错解决

问题描述升级win11之后重新安装LaTex,发现我的论文编译不过,报错是STXingkai(华文行楷)字体丢失:Package fontspec Error: The font "STXingkai" cannot be found. \maketitlename = STXingkai/OT, rootname = STXingkai/OT, pointsize = mktexmf: empty or non-existent rootfile!kpathsea: Running mktexm

2022-02-18 11:08:19 1659 2

原创 PowerShell无法加载文件 xxx,因为在此系统上禁止运行脚本的解决方法

使用 Hexo 配置博客,遇到了这个问题:hexo : 无法加载文件 C:\Users\Evan\AppData\Roaming\npm\hexo.ps1,因为在此系统上禁止运行脚本。有关详细信息,请参阅https:/go.microsoft.com/fwlink/?LinkID=135170 中的 about_Execution_Policies。这是因为 PowerShell 没有设置执行策略。通过命令 Get-ExecutionPolicy -List 可以看到当前系统用户的执行策略,没有设置

2022-01-12 14:18:23 3797

原创 ROS安装过程中如何解决 rosdep update 命令出现错误

感觉每次装ros都要重新找解决这个错误的文章,好麻烦(不过为什么我老是要重新装ros…)。反正这次先码住这篇好用的,以后不用到处找了。ROS安装过程中如何解决 rosdep update 命令出现错误

2021-12-07 21:13:42 1207

原创 ZED相机获取当前时间戳 Python zed.get_timestamp()使用方法

最近在用ZED的相机,这款相机API封装得还挺好用。不过看了一下网上关于它的问题总结还是太少,所以遇到问题我也发个博客,希望能帮助到大家。用 zed.get_timestamp(sl.TIME_REFERENCE.CURRENT) 可以获取到当前时间,是个十进制19位的数字,我看了一下只要把小数点往左移9位就可以得到跟 time.time() 获得的时间一样的格式。所以下面这个得到的值就是一个 time.struct_time 类型的当前帧时间戳:timestamp = time.localtime(

2021-12-07 14:56:33 1296

原创 Python保存为json中文Unicode乱码解决 json.dump()

Python 使用 json.dump() 保存文件时中文会变成 Unicode。在打开写出文件时加入 encoding="utf8",在dump时加入 ensure_ascii=False 即可解决。city_list = [{"name": "黑龙江呼玛", "lon": 126.6, "lat": 51.72}, /{"name": "黑龙江塔河", "lon": 124.7, "lat": 52.32}, /{"name": "黑龙江漠河", "lon": 122.37, "lat

2021-11-17 10:01:30 41514

原创 python opencv读取rtsp视频崩溃卡死 高延迟 内存泄漏解决方法

使用opencv读取rtsp视频流预览的时候,发现运行越久越卡的情况。分析是内存没有释放的缘故,在循环里每帧结束后把该帧用del()删除即可。 修改代码如下:cap = cv2.VideoCapture(rtsp_address)while cap.isOpened(): ret, frame = cap.read() if not ret: break cv2.imshow('preview', frame) del(frame)...

2021-11-10 16:45:25 12775 4

原创 ImportError: OpenCV loader: missing configuration file: [‘config.py‘]. 报错解决

用 pyinstaller 打包引用了 opencv 的程序时,出现了这个错误:ImportError: OpenCV loader: missing configuration file: ['config.py']. Check OpenCV installation.查阅了往上的方法大部分都说升级 pyinstaller 和 opencv 就可以解决:pip install --upgrade opencv-pythonpip install --upgrade pyinstaller可

2021-10-29 18:29:07 9888 17

原创 无论你是为了做什么学习的Python 强烈安利你这棵树|Python技能树测评

前言Python是现在非常火的一门编程语言,相信很多同学都想学习它,而且目的各不相同:有的是为了做爬虫、做后端;有的是为了做图形界面;有的是为了做数据分析、自动化办公;还有的是为了做深度学习、CV、NLP……不管你是为了做哪个部分,笔者都强烈安利你这棵CSDN刚刚推出的 Python技能树。因为它除了Python基础知识外,竟然还包含了上面提到的所有部分!这棵技能树里涵盖的知识点是非常全面的,我认为各位同学可以根据自己的实际情况选学其中的一些部分。下面我给大家切分一下技能树中各模块的学习步骤,并简要

2021-10-07 02:01:25 407

原创 更新Windows11出现错误0x80240022的解决方法

尝试加入预览计划更新 Windows11,结果在安装的时候出了这个错误:安装更新时出现一些问题,但我们稍后会重试。如果你继续看到此错误,并且想要搜索 Web 或联系支持人员以获取相关信息,以下信息可能会对你有帮助: (0x80240022)我把360安全卫士关掉之后再重启,完美解决。...

2021-10-05 02:56:57 14277 3

原创 ST-Link出现Error: Flash Download failed - “Cortex-M3“的解决方法

电脑重装了重新下载了 MDK,发现 ST-Link怎么也连不上,一直报 Error: Flash Download failed - “Cortex-M3”。网上的各种方法都试过了也不行。在我快要放弃了正打算直接换芯片试试的时候,随手把 Download Options 里面这两个选项勾上,诶好了??然后我再把这两个选项勾选取消,还是可以正常上传。不知道是什么原理,反正解决了,如果有知道的朋友可以麻烦帮忙解答一下吗,感谢~...

2021-09-03 13:12:12 1006 1

翻译 【Qt for Python官方教程】基于Python的上下文属性

本篇教程将快速地教大家如何编写一个载入 QML 文件并与之交互的 python 应用程序。与传统语言(C++ 等)不同,QML是一种描述性语言,它能让你更快地设计 UI 界面。QtQml 和 QtQuick 模块提供了 Python 使用 QML 所需的底层。...

2021-09-02 11:57:44 3056

原创 Windows预览体验计划0x80072ee7、0x0报错解决方法

因为想要用wslg,所以需要加入windows预览体验计划。结果总是提示0x80072ee7报错,有时候会提示0x0啥的。网上说是网络问题,但是整了好久都解决不了。最后在贴吧看到了这个方法。只用把下面那个注册表文件运行一下就完美解决了。注册表文件下载:windows预览体验计划报错解决注册表.zip...

2021-09-02 00:08:17 4457 1

原创 LVGL 标签(label)显示数字

LittleVGL 的 label 有格式化输出的函数 lv_label_set_text_fmt(),可以用它来显示数字。函数定义void lv_label_set_text_fmt (lv_obj_t *obj, const char *fmt,...)示例代码lv_obj_t label = lv_label_create(lv_scr_act());lv_label_set_text_fmt(label, "%d", 28); // 显示数字lv_obj_center(label);

2021-08-24 14:22:46 6426

原创 LVGL设置圆弧(arc)粗细宽度样式问题解决

跟着官网的教程学lvgl,在画圆弧的时候发现不知道怎么设置圆弧的粗细。官网教程没用到,查百度半天也没找着。最后翻函数手册发现原来 lv_style_set_arc_width() 这个函数就是用来设置圆弧的粗细的。(我以为是用来设置宽度的)LVGL版本lvgl 8.0.2官网教程:https://docs.lvgl.io/8/函数手册:https://docs.lvgl.io/8/_downloads/39cea4971f327964c804e4e6bc96bfb4/LVGL.pdf函数定义v

2021-08-24 11:17:46 3110

翻译 【Qt for Python官方教程】创建第一个Quick/QML程序

QML 是一种描述性语言,用它开发程序可以比传统语言更快速。由于它的描述性特性,用于设计 UI 界面非常理想。在 QML 中,用户界面用一个带有属性的对象树来描述。在本篇教程中,我们将讲解怎么用 PySide6 和 QML 完成一个简单的 “Hello World” 程序。一个 PySide6/QML 程序至少包含两个文件:一个 QML 文件用于描述用户界面,另一个 python 文件用于载入 QML 文件。简单起见,我们把这两个文件放在同一个目录下。下面是一个简单的 QML 文件,命名为 view.q

2021-08-21 22:15:33 6675 4

翻译 【Qt for Python官方教程】改变Qt Widgets程序的样式

Qt Widgets 编写的程序默认使用系统原生样式。如果整个系统改变了样式设置,你的Qt程序也会跟着变换样式。但是,有时候我们需要自己改变窗口或者各个组件的样式。比如,我们可以看下面这段例程:import sysfrom PySide6.QtCore import Qtfrom PySide6.QtWidgets import QApplication, QLabelif __name__ == "__main__": app = QApplication() w = QLab

2021-08-15 23:09:08 2999 1

翻译 【Qt for Python官方教程】使用pyside6-rcc引入.qrc文件

Qt 资源系统(Qt Resource System)是在应用程序里存储二进制文件的一种机制。文件可以被嵌入到应用程序中,通过 QFile 类,和使用以 :/ 开头的文件名表示的 QIcon 和 QPixmap 类来访问。Qt 资源系统经常用来存储图片、图标、字体等各种第三方资源。这篇教程里我们将学习怎么载入自己的图片来作为按钮图标。为了方便学习,我们来尝试修改 Qt 例程里的多媒体播放器。它的界面如下,多媒体的控制(播放、暂停、停止等)是用 QPushButton 组件完成的,使用的都是默认图标。

2021-08-07 19:43:49 6592 4

翻译 【Qt for Python官方教程】使用QUiLoader和pyside6-uic导入ui文件

本篇文章介绍如何在 Qt for Python 项目中用 Qt Designer 来创建一个基于 Qt Widgets 的图形界面。Qt Designer 是一个图形化的 UI 设计工具,可以在 pyside6 的目录下找到它 (designer.exe),同时在 Qt Creator IDE 里也可以找到它。Qt Designer 的使用在官网的 Using Qt Designer 教程里详细介绍。Qt Designer 设计的界面被保存为 .ui 文件,这个文件使用的是基于 XML 的格式。在编译项目

2021-08-07 18:09:32 12113 2

岭回归和Lasso Python实现 正则化回归技术

# 岭回归和Lasso Python实现 正则化回归技术 ## 项目简介 本项目实现了岭回归(Ridge Regression)和Lasso回归两种正则化线性回归算法。岭回归使用L2正则化防止过拟合,Lasso回归使用L1正则化同时进行特征选择。通过比较两种方法的效果,展示正则化技术在回归分析中的重要性。 ## 环境要求 - Python 3.7+ - numpy - matplotlib ## 安装说明 1. 安装依赖包: ```bash pip install numpy matplotlib ``` 2. 运行程序: ```bash python main.py ``` ## 使用说明 直接运行主程序即可: ```bash python main.py ``` 程序将自动比较岭回归和Lasso回归的性能,展示系数路径和预测效果。 ## 项目结构 - `main.py`: 主程序文件,包含完整的正则化回归实现和演示 ## 技术原理 ### 岭回归(Ridge Regression) **目标函数**: min ||y - Xw||² + α||w||² **特点**: - L2正则化 - 收缩所有系数,但不使其为零 - 适合多重共线性问题 - 解析解存在 ### Lasso回归(Least Absolute Shrinkage and Selection Operator) **目标函数**: min ||y - Xw||² + α||w||₁ **特点**: - L1正则化 - 可以将系数压缩至零,实现特征选择 - 产生稀疏解 - 使用坐标下降法求解 ### 超参数选择 - **α (alpha)**:

2025-09-28

多项式回归Python代码 非线性回归拟合演示

# 多项式回归Python代码 非线性回归拟合演示 ## 项目简介 本项目实现了多项式回归(Polynomial Regression)算法,通过将原始特征转换为多项式特征,再应用线性回归来拟合非线性关系。项目演示了不同阶数多项式的拟合效果,并分析了过拟合问题,是理解偏差-方差权衡的重要示例。 ## 环境要求 - Python 3.7+ - numpy - matplotlib ## 安装说明 1. 安装依赖包: ```bash pip install numpy matplotlib ``` 2. 运行程序: ```bash python main.py ``` ## 使用说明 直接运行主程序即可: ```bash python main.py ``` 程序将自动比较不同阶数多项式的拟合效果,展示过拟合现象。 ## 项目结构 - `main.py`: 主程序文件,包含完整的多项式回归实现和演示 ## 技术原理 ### 多项式回归原理 将原始特征x转换为多项式特征: - 1阶:x - 2阶:x, x² - 3阶:x, x², x³ - ... 然后应用线性回归: y = w₀ + w₁x + w₂x² + w₃x³ + ... ### 偏差-方差权衡 - **低阶多项式**:高偏差,低方差(欠拟合) - **高阶多项式**:低偏差,高方差(过拟合) - **最佳阶数**:平衡偏差和方差 ### 过拟合识别 - 训练误差低,测试误差高 - 模型在训练数据上表现完美,但在新数据上泛化能力差 - 残差分析显示系统性偏差 ## 示例演示 运行程序后,将生成三个可视化图片: ### 多项式拟合对比 四个子图

2025-09-28

卷积神经网络CNN Python实现 图像分类基础模型

# 卷积神经网络CNN Python实现 图像分类基础模型 ## 项目简介 - 功能描述:实现基于PyTorch的卷积神经网络,用于MNIST手写数字图像分类任务 - 技术特点:包含数据预处理、模型构建、训练过程、可视化分析等完整流程 - 适用场景:图像分类入门学习、CNN基础原理理解、深度学习实践 ## 环境要求 - Python版本:3.8+ - 操作系统要求:Windows/Linux/MacOS - 硬件要求:建议配备GPU以加速训练 ## 安装说明 1. 安装Python环境(推荐使用conda创建虚拟环境) 2. 克隆或下载项目文件 3. 安装依赖包: ```bash pip install -r requirements.txt ``` 4. 验证安装:运行 `python main.py` 应能正常启动程序 ## 使用说明 1. 基本用法:直接运行 `python main.py` 即可开始训练和测试 2. 高级功能: - 修改超参数调整模型性能 - 查看生成的训练曲线和混淆矩阵 - 分析模型在测试集上的表现 ## 项目结构 - `main.py`:主程序文件,包含完整CNN实现 - `requirements.txt`:项目依赖包列表 - `README.md`:项目说明文档 ## 示例演示 运行程序后将生成以下可视化结果: - 训练损失和准确率曲线 - 混淆矩阵热力图 - 模型预测结果示例 ## 技术原理 - 算法说明:使用卷积层提取图像特征,全连接层进行分类 - 核心技术介绍:CNN架构设计、反向传播优化、数据增强 - 参考文献:PyTorch官方文档、深度学习相关教材

2025-09-28

AdaBoost集成学习Python代码 自适应提升算法演示

# AdaBoost集成学习Python代码 自适应提升算法演示 ## 项目简介 本项目实现了AdaBoost(Adaptive Boosting)集成学习算法。AdaBoost是一种经典的提升算法,通过迭代训练弱学习器并调整样本权重来构建强分类器,是机器学习中最具影响力的算法之一。 ## 核心算法原理 ### AdaBoost算法 AdaBoost的核心思想是: 1. **初始化**: 所有训练样本具有相同的权重 2. **迭代训练**: 训练弱学习器,计算其在加权样本上的错误率 3. **计算权重**: 根据错误率计算学习器的权重 4. **更新权重**: 提高错分样本的权重,降低正确样本的权重 5. **组合预测**: 加权组合所有弱学习器的预测 ### 算法流程 1. 初始化样本权重 D₁(i) = 1/N 2. 对于 t = 1 到 T: - 训练弱学习器 h_t 使用权重 D_t - 计算错误率 ε_t = Σ D_t(i) * I(y_i ≠ h_t(x_i)) - 计算学习器权重 α_t = ½ ln((1-ε_t)/ε_t) - 更新样本权重 D_{t+1}(i) = D_t(i) * exp(α_t * I(y_i ≠ h_t(x_i))) - 归一化 D_{t+1} 3. 最终分类器 H(x) = sign(Σ α_t * h_t(x)) ## 技术特点 - **自适应性**: 根据前一轮的表现调整样本权重 - **序列训练**: 学习器按顺序训练,后面的学习器纠正前面的错误 - **加权投票**: 表现好的学习器获得更高的权重 - **理论保证**: 提供训练误差的理论上界 - **鲁棒性**: 对异常值相对不敏感 ## 依赖包 `

2025-09-28

K近邻算法KNN Python实现 分类和回归任务可视化

# K近邻算法KNN Python实现 分类和回归任务可视化 ## 项目简介 本项目实现了K近邻(K-Nearest Neighbors, KNN)算法,这是一种简单有效的监督学习算法。KNN既可以用于分类任务,也可以用于回归任务,通过计算测试样本与训练样本的距离,找到k个最近邻居进行预测。 ## 环境要求 - Python 3.7+ - numpy - matplotlib ## 安装说明 1. 安装依赖包: ```bash pip install numpy matplotlib ``` 2. 运行程序: ```bash python main.py ``` ## 使用说明 直接运行主程序即可: ```bash python main.py ``` 程序将自动演示分类和回归两个任务,并在控制台输出结果,最终生成可视化图片。 ## 项目结构 - `main.py`: 主程序文件,包含完整的KNN算法实现和演示 ## 技术原理 ### 算法原理 KNN算法的核心思想是"近朱者赤": 1. **距离计算**:计算测试样本与所有训练样本的距离 2. **近邻选择**:选择k个距离最近的训练样本 3. **预测决策**: - 分类:多数投票决定类别 - 回归:平均值作为预测结果 ### 距离度量 支持多种距离度量: - **欧几里得距离**:直线距离 - **曼哈顿距离**:网格距离 - **闵可夫斯基距离**: generalized距离 ### 核心参数 - **k值**:近邻数量,影响模型复杂度 - **距离度量**:决定样本相似性的计算方式 ## 示例演示 运行程序后,将生成两个可视化图片:

2025-09-28

萤火虫群优化算法FFOA Python实现 萤火虫群体行为算法

# 萤火虫群优化算法FFOA Python实现 萤火虫群体行为算法 ## 项目简介 - 功能描述:实现萤火虫群优化算法(Firefly Optimization Algorithm, FFOA),模拟萤火虫发光吸引行为进行全局优化 - 技术特点:群智能优化算法,支持多维函数优化,可视化收敛过程和搜索空间 - 适用场景:函数优化、参数寻优、工程设计优化等 ## 环境要求 - Python版本:3.7+ - 操作系统要求:Windows/Linux/macOS - 硬件要求:无特殊要求 ## 安装说明 1. 安装Python依赖: ``` pip install -r requirements.txt ``` 2. 运行程序: ``` python main.py ``` ## 使用说明 1. 基本用法:直接运行main.py即可开始优化演示 2. 高级功能: - 修改func变量选择不同的测试函数(rastrigin或sphere) - 调整pop_size、max_iter等参数控制算法性能 - 可视化结果自动保存为图片文件 ## 项目结构 - main.py:主程序文件,包含FFOA算法实现和可视化 - requirements.txt:Python依赖包列表 - convergence.png:算法收敛曲线图(运行后生成) - search_space.png:搜索空间可视化图(运行后生成) ## 示例演示 运行程序后将生成: - 控制台输出:最优解和适应度值 - convergence.png:显示算法收敛过程的曲线图 - search_space.png:二维搜索空间的等高线图,显示萤火虫位置和最优解 ## 技术原

2025-09-28

聚类分析Silhouette系数Python代码 聚类质量评估图表

# 聚类分析Silhouette系数Python代码 聚类质量评估图表 ## 项目简介 - 功能描述:实现K-means聚类分析,计算Silhouette系数并生成质量评估图表 - 技术特点:使用scikit-learn进行聚类分析,包含多种聚类质量评估可视化 - 适用场景:数据聚类分析,聚类结果质量评估,最优聚类数确定 ## 环境要求 - Python版本:3.7+ - 操作系统要求:Windows/Linux/macOS - 硬件要求:无特殊要求 ## 安装说明 1. 安装Python依赖: ``` pip install -r requirements.txt ``` 2. 配置说明:无需额外配置 3. 验证安装:运行main.py,如果无错误则安装成功 ## 使用说明 1. 基本用法:直接运行main.py,程序会生成示例数据并进行聚类分析 2. 高级功能:可以修改代码中的数据来分析自己的数据集 3. 配置选项:可在代码中调整聚类数和评估参数 ## 项目结构 - main.py:主程序文件,包含聚类分析和可视化逻辑 - requirements.txt:Python依赖包列表 - silhouette_plot.png:Silhouette系数图 - clustering_analysis.png:综合聚类分析图表 ## 示例演示 运行程序后会生成聚类结果和质量评估可视化图表。 ## 技术原理 - 算法说明:K-means聚类算法,Silhouette系数评估聚类质量 - 核心技术介绍:使用scikit-learn的KMeans和silhouette_samples - 参考文献:聚类分析标准方法和质量评估指标

2025-09-28

鸟群觅食算法BSA Python实现 鸟群行为群体智能算法

# 鸟群觅食算法BSA Python实现 鸟群行为群体智能算法 ## 项目简介 - 功能描述:实现鸟群觅食算法(Bird Swarm Algorithm, BSA),模拟鸟群觅食行为进行全局优化 - 技术特点:群智能优化算法,支持多维函数优化,可视化收敛过程和搜索空间 - 适用场景:函数优化、参数寻优、工程设计优化等 ## 环境要求 - Python版本:3.7+ - 操作系统要求:Windows/Linux/macOS - 硬件要求:无特殊要求 ## 安装说明 1. 安装Python依赖: ``` pip install -r requirements.txt ``` 2. 运行程序: ``` python main.py ``` ## 使用说明 1. 基本用法:直接运行main.py即可开始优化演示 2. 高级功能: - 修改func变量选择不同的测试函数(rastrigin或sphere) - 调整pop_size、max_iter等参数控制算法性能 - 可视化结果自动保存为图片文件 ## 项目结构 - main.py:主程序文件,包含BSA算法实现和可视化 - requirements.txt:Python依赖包列表 - convergence.png:算法收敛曲线图(运行后生成) - search_space.png:搜索空间可视化图(运行后生成) ## 示例演示 运行程序后将生成: - 控制台输出:最优解和适应度值 - convergence.png:显示算法收敛过程的曲线图 - search_space.png:二维搜索空间的等高线图,显示鸟群位置和最优解 ## 技术原理 鸟群觅食算法模拟鸟群的觅食行为:

2025-09-28

鲨鱼优化算法SOA Python代码 鲨鱼捕食策略优化算法

# 鲨鱼优化算法SOA Python代码 鲨鱼捕食策略优化算法 ## 项目简介 - 功能描述:实现鲨鱼优化算法(Shark Optimization Algorithm, SOA),模拟鲨鱼捕食行为进行全局优化 - 技术特点:群智能优化算法,支持多维函数优化,可视化收敛过程和搜索空间 - 适用场景:函数优化、参数寻优、工程设计优化等 ## 环境要求 - Python版本:3.7+ - 操作系统要求:Windows/Linux/macOS - 硬件要求:无特殊要求 ## 安装说明 1. 安装Python依赖: ``` pip install -r requirements.txt ``` 2. 运行程序: ``` python main.py ``` ## 使用说明 1. 基本用法:直接运行main.py即可开始优化演示 2. 高级功能: - 修改func变量选择不同的测试函数(rastrigin或sphere) - 调整pop_size、max_iter等参数控制算法性能 - 可视化结果自动保存为图片文件 ## 项目结构 - main.py:主程序文件,包含SOA算法实现和可视化 - requirements.txt:Python依赖包列表 - convergence.png:算法收敛曲线图(运行后生成) - search_space.png:搜索空间可视化图(运行后生成) ## 示例演示 运行程序后将生成: - 控制台输出:最优解和适应度值 - convergence.png:显示算法收敛过程的曲线图 - search_space.png:二维搜索空间的等高线图,显示鲨鱼位置和最优解 ## 技术原理 鲨鱼优化算法模拟鲨

2025-09-28

饼图百分比可视化Python实现 数据比例分布图表

# 饼图百分比可视化Python实现 数据比例分布图表 ## 项目简介 - 功能描述:使用matplotlib创建各种样式的饼图,适用于数据比例分布的可视化展示 - 技术特点:支持多种饼图样式、数据分布分析、自动保存图表 - 适用场景:比例数据展示、分类统计可视化、报告图表制作 ## 环境要求 - Python版本:3.7+ - 操作系统:Windows/Linux/macOS - 硬件要求:标准PC配置 ## 安装说明 1. 安装Python环境(推荐使用Anaconda) 2. 克隆或下载项目文件 3. 安装依赖包: ```bash pip install -r requirements.txt ``` 4. 运行程序: ```bash python main.py ``` ## 使用说明 1. 基本用法: - 直接运行main.py即可生成示例图表 - 图表自动保存到output目录 2. 高级功能: - 支持自定义数据输入 - 多种饼图样式选择 - 数据分布分析报告输出 3. 配置选项: - 可修改数据生成参数 - 自定义图表颜色和样式 - 调整输出图片分辨率 ## 项目结构 - main.py:主程序文件,包含所有核心功能 - requirements.txt:Python依赖包列表 - output/:输出目录,存放生成的图表文件 - README.md:项目说明文档 ## 示例演示 程序运行后将在output目录生成以下图表: - 基础饼图 - 环形饼图 - 分离式饼图 - 嵌套饼图 - 多饼图对比 - 3D饼图 - 百分比柱状图 ## 技术原理 -

2025-09-28

迷宫生成器Python代码 递归回溯算法随机迷宫生成

# 迷宫生成器Python代码 递归回溯算法随机迷宫生成 ## 项目简介 - 功能描述:使用递归回溯算法生成随机迷宫 - 技术特点:递归算法实现,matplotlib可视化 - 适用场景:算法学习,游戏开发 ## 环境要求 - Python版本:3.6+ - 操作系统要求:Windows/Linux/Mac ## 安装说明 1. 安装依赖:pip install -r requirements.txt 2. 运行程序:python main.py ## 使用说明 运行main.py后,会生成随机迷宫并保存可视化图片maze.png ## 项目结构 - main.py:主程序 - requirements.txt:依赖 - maze.png:生成的迷宫图片 ## 示例演示 运行后查看maze.png文件 ## 技术原理 递归回溯算法:深度优先搜索生成迷宫,确保连通性。

2025-09-28

路径分析Path Analysis Python代码 结构方程模型可视化

# 路径分析Path Analysis Python代码 结构方程模型可视化 ## 项目简介 - 功能描述:实现路径分析,构建和可视化结构方程模型中的路径关系 - 技术特点:使用回归分析构建路径模型,包含路径图可视化 - 适用场景:因果关系分析,结构方程建模,路径系数估计 ## 环境要求 - Python版本:3.7+ - 操作系统要求:Windows/Linux/macOS - 硬件要求:无特殊要求 ## 安装说明 1. 安装Python依赖: ``` pip install -r requirements.txt ``` 2. 配置说明:无需额外配置 3. 验证安装:运行main.py,如果无错误则安装成功 ## 使用说明 1. 基本用法:直接运行main.py,程序会生成示例数据并进行路径分析 2. 高级功能:可以修改代码中的模型结构来分析自己的路径模型 3. 配置选项:可在代码中调整变量关系和路径设置 ## 项目结构 - main.py:主程序文件,包含路径分析和可视化逻辑 - requirements.txt:Python依赖包列表 - path_analysis.png:路径分析综合图表 ## 示例演示 运行程序后会生成路径图,直观展示变量间的因果关系。 ## 技术原理 - 算法说明:基于回归的路径分析,路径系数计算 - 核心技术介绍:使用NetworkX进行路径可视化 - 参考文献:结构方程模型和路径分析标准方法

2025-09-28

蝴蝶优化算法BOA Python实现 蝴蝶迁徙行为仿生优化

# 蝴蝶优化算法BOA Python实现 蝴蝶迁徙行为仿生优化 ## 项目简介 - 功能描述:实现蝴蝶优化算法(Butterfly Optimization Algorithm, BOA),模拟蝴蝶迁徙和觅食行为进行全局优化 - 技术特点:群智能优化算法,支持多维函数优化,可视化收敛过程和搜索空间 - 适用场景:函数优化、参数寻优、工程设计优化等 ## 环境要求 - Python版本:3.7+ - 操作系统要求:Windows/Linux/macOS - 硬件要求:无特殊要求 ## 安装说明 1. 安装Python依赖: ``` pip install -r requirements.txt ``` 2. 运行程序: ``` python main.py ``` ## 使用说明 1. 基本用法:直接运行main.py即可开始优化演示 2. 高级功能: - 修改func变量选择不同的测试函数(rastrigin或sphere) - 调整pop_size、max_iter等参数控制算法性能 - 可视化结果自动保存为图片文件 ## 项目结构 - main.py:主程序文件,包含BOA算法实现和可视化 - requirements.txt:Python依赖包列表 - convergence.png:算法收敛曲线图(运行后生成) - search_space.png:搜索空间可视化图(运行后生成) ## 示例演示 运行程序后将生成: - 控制台输出:最优解和适应度值 - convergence.png:显示算法收敛过程的曲线图 - search_space.png:二维搜索空间的等高线图,显示蝴蝶位置和最优解 ## 技术原理 蝴蝶

2025-09-28

蛙跳算法SFLA Python代码 青蛙跳跃优化算法演示

# 蛙跳算法SFLA Python代码 青蛙跳跃优化算法演示 ## 项目简介 - 功能描述:实现蛙跳算法(Shuffled Frog Leaping Algorithm, SFLA),模拟青蛙跳跃觅食行为进行全局优化 - 技术特点:群智能优化算法,支持多维函数优化,可视化收敛过程和搜索空间 - 适用场景:函数优化、参数寻优、工程设计优化等 ## 环境要求 - Python版本:3.7+ - 操作系统要求:Windows/Linux/macOS - 硬件要求:无特殊要求 ## 安装说明 1. 安装Python依赖: ``` pip install -r requirements.txt ``` 2. 运行程序: ``` python main.py ``` ## 使用说明 1. 基本用法:直接运行main.py即可开始优化演示 2. 高级功能: - 修改func变量选择不同的测试函数(rastrigin或sphere) - 调整pop_size、max_iter等参数控制算法性能 - 可视化结果自动保存为图片文件 ## 项目结构 - main.py:主程序文件,包含SFLA算法实现和可视化 - requirements.txt:Python依赖包列表 - convergence.png:算法收敛曲线图(运行后生成) - search_space.png:搜索空间可视化图(运行后生成) ## 示例演示 运行程序后将生成: - 控制台输出:最优解和适应度值 - convergence.png:显示算法收敛过程的曲线图 - search_space.png:二维搜索空间的等高线图,显示青蛙位置和最优解 ## 技术原理 蛙跳算法模

2025-09-28

等高线图Contour Plot Python代码 三维数据等高线可视化

# 等高线图Contour Plot Python代码 三维数据等高线可视化 ## 项目简介 本项目实现了基于Python和matplotlib的三维数据等高线可视化工具。通过等高线图展示三维数据的层次结构,帮助用户直观理解数据的空间分布和变化趋势。 ## 主要功能 ### 1. 基础等高线图 - 填充等高线图 - 线条等高线图 - 带标签的等高线图 ### 2. 三维数据可视化 - 数学函数等高线图 - 地形数据等高线图 - 统计数据等高线图 ### 3. 高级等高线图 - 多层等高线叠加 - 彩色填充等高线 - 带颜色条的等高线图 ### 4. 数据分析功能 - 等高线密度分析 - 梯度计算和可视化 - 极值点识别 ## 技术特点 - **多种等高线样式**: 支持填充、线条、标签等多种展示方式 - **颜色映射**: 使用多种colormap展示数据层次 - **平滑插值**: 基于scipy的插值算法实现平滑等高线 - **高分辨率输出**: 300 DPI高质量图像保存 - **中文标签支持**: 完整的中文界面和注释 ## 安装依赖 ```bash pip install -r requirements.txt ``` ## 使用方法 直接运行主程序: ```bash python main.py ``` 程序将自动生成多种三维数据并创建等高线图,保存在output目录中。 ## 输出文件 程序执行后将在output目录生成以下图像文件: - `basic_contour.png`: 基础等高线图 - `filled_contour.png`: 填充等高线图 - `contour_labels.png`: 带标签等高线图

2025-09-28

直方图频率分布Python代码 连续数据分组统计可视化

# 直方图频率分布Python代码 连续数据分组统计可视化 ## 项目简介 - 功能描述:使用matplotlib创建各种样式的直方图,适用于连续数据频率分布的可视化展示 - 技术特点:支持多种直方图样式、密度估计、统计分析、自动保存图表 - 适用场景:数据分布分析、统计图表制作、科研数据可视化 ## 环境要求 - Python版本:3.7+ - 操作系统:Windows/Linux/macOS - 硬件要求:标准PC配置 ## 安装说明 1. 安装Python环境(推荐使用Anaconda) 2. 克隆或下载项目文件 3. 安装依赖包: ```bash pip install -r requirements.txt ``` 4. 运行程序: ```bash python main.py ``` ## 使用说明 1. 基本用法: - 直接运行main.py即可生成示例图表 - 图表自动保存到output目录 2. 高级功能: - 支持多种分布类型数据生成 - 多种直方图样式选择 - 完整的统计分析报告输出 3. 配置选项: - 可修改数据生成参数和分布类型 - 自定义图表颜色和样式 - 调整直方图bins数量 ## 项目结构 - main.py:主程序文件,包含所有核心功能 - requirements.txt:Python依赖包列表 - output/:输出目录,存放生成的图表文件 - README.md:项目说明文档 ## 示例演示 程序运行后将在output目录生成以下图表: - 基础直方图 - 密度直方图 - 累积频率直方图 - 多组数据对比直方图 - 分组直方图

2025-09-28

生存分析Log-rank检验Python代码 Kaplan-Meier曲线比较

# 生存分析Log-rank检验Python代码 Kaplan-Meier曲线比较 ## 项目简介 - 功能描述:实现Kaplan-Meier生存曲线估计和Log-rank检验,比较不同组别的生存差异 - 技术特点:使用lifelines库进行生存分析,包含多种生存数据可视化 - 适用场景:医学研究、工程可靠性分析、客户流失分析等生存时间数据分析 ## 环境要求 - Python版本:3.7+ - 操作系统要求:Windows/Linux/macOS - 硬件要求:无特殊要求 ## 安装说明 1. 安装Python依赖: ``` pip install -r requirements.txt ``` 2. 配置说明:无需额外配置 3. 验证安装:运行main.py,如果无错误则安装成功 ## 使用说明 1. 基本用法:直接运行main.py,程序会生成示例生存数据并进行分析 2. 高级功能:可以修改代码中的数据来分析自己的生存数据 3. 配置选项:可在代码中调整分组变量和生存时间设置 ## 项目结构 - main.py:主程序文件,包含生存分析和可视化逻辑 - requirements.txt:Python依赖包列表 - km_curves.png:Kaplan-Meier生存曲线图 - logrank_test.png:Log-rank检验结果可视化 - survival_analysis.png:综合生存分析图表 ## 示例演示 运行程序后会生成生存曲线图表,直观展示不同组别的生存概率和统计检验结果。 ## 技术原理 - 算法说明:Kaplan-Meier估计量计算生存概率,Log-rank检验比较生存曲线差异 - 核心技术介绍:使用lifelines库的Kapla

2025-09-28

猴子优化算法MOA Python代码 猴子觅食行为优化算法

# 猴子优化算法MOA Python代码 猴子觅食行为优化算法 ## 项目简介 - 功能描述:实现猴子优化算法(Monkey Optimization Algorithm, MOA),模拟猴子觅食行为进行全局优化 - 技术特点:群智能优化算法,支持多维函数优化,可视化收敛过程和搜索空间 - 适用场景:函数优化、参数寻优、工程设计优化等 ## 环境要求 - Python版本:3.7+ - 操作系统要求:Windows/Linux/macOS - 硬件要求:无特殊要求 ## 安装说明 1. 安装Python依赖: ``` pip install -r requirements.txt ``` 2. 运行程序: ``` python main.py ``` ## 使用说明 1. 基本用法:直接运行main.py即可开始优化演示 2. 高级功能: - 修改func变量选择不同的测试函数(rastrigin或sphere) - 调整pop_size、max_iter等参数控制算法性能 - 可视化结果自动保存为图片文件 ## 项目结构 - main.py:主程序文件,包含MOA算法实现和可视化 - requirements.txt:Python依赖包列表 - convergence.png:算法收敛曲线图(运行后生成) - search_space.png:搜索空间可视化图(运行后生成) ## 示例演示 运行程序后将生成: - 控制台输出:最优解和适应度值 - convergence.png:显示算法收敛过程的曲线图 - search_space.png:二维搜索空间的等高线图,显示猴子位置和最优解 ## 技术原理 猴子优化算法模拟

2025-09-28

狼群狩猎算法WHA Python代码 狼群合作狩猎仿生优化

# 狼群狩猎算法WHA Python代码 狼群合作狩猎仿生优化 ## 项目简介 - 功能描述:实现狼群狩猎算法(Wolf Hunting Algorithm, WHA),模拟狼群合作狩猎行为进行全局优化 - 技术特点:群智能优化算法,支持多维函数优化,可视化收敛过程和搜索空间 - 适用场景:函数优化、参数寻优、工程设计优化等 ## 环境要求 - Python版本:3.7+ - 操作系统要求:Windows/Linux/macOS - 硬件要求:无特殊要求 ## 安装说明 1. 安装Python依赖: ``` pip install -r requirements.txt ``` 2. 运行程序: ``` python main.py ``` ## 使用说明 1. 基本用法:直接运行main.py即可开始优化演示 2. 高级功能: - 修改func变量选择不同的测试函数(rastrigin或sphere) - 调整pop_size、max_iter等参数控制算法性能 - 可视化结果自动保存为图片文件 ## 项目结构 - main.py:主程序文件,包含WHA算法实现和可视化 - requirements.txt:Python依赖包列表 - convergence.png:算法收敛曲线图(运行后生成) - search_space.png:搜索空间可视化图(运行后生成) ## 示例演示 运行程序后将生成: - 控制台输出:最优解和适应度值 - convergence.png:显示算法收敛过程的曲线图 - search_space.png:二维搜索空间的等高线图,显示狼群位置和最优解 ## 技术原理 狼群狩猎算法模拟狼群的狩猎

2025-09-28

狮群优化算法LOA Python实现 狮群领土划分仿生算法

# 狮群优化算法LOA Python实现 狮群领土划分仿生算法 ## 项目简介 - 功能描述:实现狮群优化算法(Lion Optimization Algorithm, LOA),模拟狮群领土划分和狩猎行为进行全局优化 - 技术特点:群智能优化算法,支持多维函数优化,可视化收敛过程和搜索空间 - 适用场景:函数优化、参数寻优、工程设计优化等 ## 环境要求 - Python版本:3.7+ - 操作系统要求:Windows/Linux/macOS - 硬件要求:无特殊要求 ## 安装说明 1. 安装Python依赖: ``` pip install -r requirements.txt ``` 2. 运行程序: ``` python main.py ``` ## 使用说明 1. 基本用法:直接运行main.py即可开始优化演示 2. 高级功能: - 修改func变量选择不同的测试函数(rastrigin或sphere) - 调整pop_size、max_iter等参数控制算法性能 - 可视化结果自动保存为图片文件 ## 项目结构 - main.py:主程序文件,包含LOA算法实现和可视化 - requirements.txt:Python依赖包列表 - convergence.png:算法收敛曲线图(运行后生成) - search_space.png:搜索空间可视化图(运行后生成) ## 示例演示 运行程序后将生成: - 控制台输出:最优解和适应度值 - convergence.png:显示算法收敛过程的曲线图 - search_space.png:二维搜索空间的等高线图,显示狮群位置和最优解 ## 技术原理 狮群优化算

2025-09-28

图像修复算法Python代码 inpainting图像修复演示

# 图像修复算法Python代码 inpainting图像修复演示 ## 项目简介 - 功能描述:图像修复和inpainting - 技术特点:基于OpenCV和numpy实现,包含丰富的可视化功能 - 适用场景:图像处理教学、计算机视觉应用等 ## 环境要求 - Python版本:3.7+ - 操作系统要求:Windows/Linux/macOS - 硬件要求:无特殊要求 ## 安装说明 1. 安装Python依赖: ``` pip install -r requirements.txt ``` 2. 配置说明:无需额外配置,直接运行即可 3. 验证安装:运行main.py,如果无错误提示则安装成功 ## 使用说明 1. 基本用法: - 运行main.py启动程序 - 程序会自动处理示例图像并生成分析结果 2. 高级功能: - 支持自定义图像路径 - 可选择不同的分析参数 - 支持批量处理多个图像 3. 配置选项: - 修改main.py中的image_path变量指定输入图像 ## 项目结构 - main.py:主程序入口,包含完整的分析功能 - data/:存放测试图像文件 - output/:存放分析结果和可视化图表 - requirements.txt:Python依赖包列表 ## 示例演示 程序运行后会生成各种分析结果的可视化图表。 ## 技术原理 - 图像修复和inpainting

2025-09-28

图像纹理分析Python代码 GLCM灰度共生矩阵

# 图像纹理分析Python代码 GLCM灰度共生矩阵 ## 项目简介 - 功能描述:纹理分析和GLCM计算 - 技术特点:基于OpenCV和numpy实现,包含丰富的可视化功能 - 适用场景:图像处理教学、计算机视觉应用等 ## 环境要求 - Python版本:3.7+ - 操作系统要求:Windows/Linux/macOS - 硬件要求:无特殊要求 ## 安装说明 1. 安装Python依赖: ``` pip install -r requirements.txt ``` 2. 配置说明:无需额外配置,直接运行即可 3. 验证安装:运行main.py,如果无错误提示则安装成功 ## 使用说明 1. 基本用法: - 运行main.py启动程序 - 程序会自动处理示例图像并生成分析结果 2. 高级功能: - 支持自定义图像路径 - 可选择不同的分析参数 - 支持批量处理多个图像 3. 配置选项: - 修改main.py中的image_path变量指定输入图像 ## 项目结构 - main.py:主程序入口,包含完整的分析功能 - data/:存放测试图像文件 - output/:存放分析结果和可视化图表 - requirements.txt:Python依赖包列表 ## 示例演示 程序运行后会生成各种分析结果的可视化图表。 ## 技术原理 - 纹理分析和GLCM计算

2025-09-28

图像矩特征计算Python实现 形状描述符分析

# 图像矩特征计算Python实现 形状描述符分析 ## 项目简介 - 功能描述:矩特征计算和形状分析 - 技术特点:基于OpenCV和numpy实现,包含丰富的可视化功能 - 适用场景:图像处理教学、计算机视觉应用等 ## 环境要求 - Python版本:3.7+ - 操作系统要求:Windows/Linux/macOS - 硬件要求:无特殊要求 ## 安装说明 1. 安装Python依赖: ``` pip install -r requirements.txt ``` 2. 配置说明:无需额外配置,直接运行即可 3. 验证安装:运行main.py,如果无错误提示则安装成功 ## 使用说明 1. 基本用法: - 运行main.py启动程序 - 程序会自动处理示例图像并生成分析结果 2. 高级功能: - 支持自定义图像路径 - 可选择不同的分析参数 - 支持批量处理多个图像 3. 配置选项: - 修改main.py中的image_path变量指定输入图像 ## 项目结构 - main.py:主程序入口,包含完整的分析功能 - data/:存放测试图像文件 - output/:存放分析结果和可视化图表 - requirements.txt:Python依赖包列表 ## 示例演示 程序运行后会生成各种分析结果的可视化图表。 ## 技术原理 - 矩特征计算和形状分析

2025-09-28

图像直方图分析Python实现 灰度分布统计可视化

# 图像直方图分析Python实现 灰度分布统计可视化 ## 项目简介 - 功能描述:实现图像直方图分析功能,包括灰度直方图统计、彩色直方图分析、直方图均衡化等 - 技术特点:基于OpenCV和matplotlib实现,支持多种图像格式,包含丰富的可视化功能 - 适用场景:图像处理教学、图像质量评估、图像增强预处理等 ## 环境要求 - Python版本:3.7+ - 操作系统要求:Windows/Linux/macOS - 硬件要求:无特殊要求 ## 安装说明 1. 安装Python依赖: ``` pip install -r requirements.txt ``` 2. 配置说明:无需额外配置,直接运行即可 3. 验证安装:运行main.py,如果无错误提示则安装成功 ## 使用说明 1. 基本用法: - 运行main.py启动程序 - 程序会自动处理示例图像并生成分析结果 2. 高级功能: - 支持自定义图像路径 - 可选择不同的直方图分析模式 - 支持批量处理多个图像 3. 配置选项: - 修改main.py中的image_path变量指定输入图像 - 调整bins参数控制直方图精度 ## 项目结构 - main.py:主程序入口,包含完整的直方图分析功能 - data/:存放测试图像文件 - output/:存放分析结果和可视化图表 - requirements.txt:Python依赖包列表 ## 示例演示 程序运行后会生成以下输出: - 原始图像显示 - 灰度直方图统计图 - RGB三通道直方图 - 直方图均衡化前后对比 - 直方图匹配结果 ## 技术原理 - 直方图统计:统计

2025-09-28

图像水印嵌入Python实现 数字水印技术可视化

# 图像水印嵌入Python实现 数字水印技术可视化 ## 项目简介 - 功能描述:数字水印嵌入技术 - 技术特点:基于OpenCV和numpy实现,包含丰富的可视化功能 - 适用场景:图像处理教学、计算机视觉应用等 ## 环境要求 - Python版本:3.7+ - 操作系统要求:Windows/Linux/macOS - 硬件要求:无特殊要求 ## 安装说明 1. 安装Python依赖: ``` pip install -r requirements.txt ``` 2. 配置说明:无需额外配置,直接运行即可 3. 验证安装:运行main.py,如果无错误提示则安装成功 ## 使用说明 1. 基本用法: - 运行main.py启动程序 - 程序会自动处理示例图像并生成分析结果 2. 高级功能: - 支持自定义图像路径 - 可选择不同的分析参数 - 支持批量处理多个图像 3. 配置选项: - 修改main.py中的image_path变量指定输入图像 ## 项目结构 - main.py:主程序入口,包含完整的分析功能 - data/:存放测试图像文件 - output/:存放分析结果和可视化图表 - requirements.txt:Python依赖包列表 ## 示例演示 程序运行后会生成各种分析结果的可视化图表。 ## 技术原理 - 数字水印嵌入技术

2025-09-28

图像压缩算法Python代码 JPEG压缩原理演示

# 图像压缩算法Python代码 JPEG压缩原理演示 ## 项目简介 - 功能描述:图像压缩算法演示 - 技术特点:基于OpenCV和numpy实现,包含丰富的可视化功能 - 适用场景:图像处理教学、计算机视觉应用等 ## 环境要求 - Python版本:3.7+ - 操作系统要求:Windows/Linux/macOS - 硬件要求:无特殊要求 ## 安装说明 1. 安装Python依赖: ``` pip install -r requirements.txt ``` 2. 配置说明:无需额外配置,直接运行即可 3. 验证安装:运行main.py,如果无错误提示则安装成功 ## 使用说明 1. 基本用法: - 运行main.py启动程序 - 程序会自动处理示例图像并生成分析结果 2. 高级功能: - 支持自定义图像路径 - 可选择不同的分析参数 - 支持批量处理多个图像 3. 配置选项: - 修改main.py中的image_path变量指定输入图像 ## 项目结构 - main.py:主程序入口,包含完整的分析功能 - data/:存放测试图像文件 - output/:存放分析结果和可视化图表 - requirements.txt:Python依赖包列表 ## 示例演示 程序运行后会生成各种分析结果的可视化图表。 ## 技术原理 - 图像压缩算法演示

2025-09-28

图像二值化算法Python代码 Otsu阈值分割演示

# 图像二值化算法Python代码 Otsu阈值分割演示 ## 项目简介 - 功能描述:实现多种图像二值化算法,包括Otsu阈值分割、固定阈值分割、自适应阈值分割等 - 技术特点:基于OpenCV和numpy实现,支持多种阈值分割方法,包含丰富的可视化功能 - 适用场景:图像分割、目标检测预处理、OCR文字提取等 ## 环境要求 - Python版本:3.7+ - 操作系统要求:Windows/Linux/macOS - 硬件要求:无特殊要求 ## 安装说明 1. 安装Python依赖: ``` pip install -r requirements.txt ``` 2. 配置说明:无需额外配置,直接运行即可 3. 验证安装:运行main.py,如果无错误提示则安装成功 ## 使用说明 1. 基本用法: - 运行main.py启动程序 - 程序会自动处理示例图像并生成各种二值化结果 2. 高级功能: - 支持自定义图像路径 - 可选择不同的阈值分割算法 - 支持参数调整和对比分析 3. 配置选项: - 修改main.py中的image_path变量指定输入图像 - 调整threshold参数控制分割阈值 ## 项目结构 - main.py:主程序入口,包含完整的二值化算法实现 - data/:存放测试图像文件 - output/:存放二值化结果和可视化图表 - requirements.txt:Python依赖包列表 ## 示例演示 程序运行后会生成以下输出: - 原始灰度图像显示 - 固定阈值分割结果 - Otsu自动阈值分割结果 - 自适应阈值分割结果 - 多种算法对比分析 ## 技术原理

2025-09-28

免疫算法IA Python实现 生物免疫系统优化算法

# 免疫算法IA Python实现 生物免疫系统优化算法 ## 项目简介 本项目实现了免疫算法(Immune Algorithm, IA),这是一种模拟生物免疫系统机理的优化算法。算法通过抗体的产生、克隆选择、亲和度成熟等机制来搜索最优解,具有良好的全局搜索能力和局部收敛性能。 ## 环境要求 - Python 3.7+ - numpy - matplotlib ## 安装说明 1. 安装依赖包: ```bash pip install numpy matplotlib ``` 2. 运行程序: ```bash python main.py ``` ## 使用说明 直接运行主程序即可: ```bash python main.py ``` 程序将自动进行优化计算,并在控制台输出迭代过程,最终生成可视化结果图片。 ## 项目结构 - `main.py`: 主程序文件,包含完整的IA算法实现 ## 技术原理 ### 算法原理 免疫算法模拟免疫系统的三大机制: 1. **克隆选择**:根据亲和度选择优秀抗体进行克隆 2. **亲和度成熟**:通过变异提高抗体的亲和度 3. **免疫记忆**:保持最优抗体进入下一代 ### 核心参数 - **种群大小**:抗体的数量 - **克隆大小**:每个抗体克隆的副本数 - **变异率**:变异发生的概率 - **变异强度**:变异的幅度 - **选择率**:参与克隆选择的抗体比例 ## 示例演示 运行程序后,将生成包含两个子图的图片: - 左侧:最终抗体分布图,紫色点表示抗体的位置,红色星号表示全局最优解 - 右侧:适应度收敛曲线,显示优化过程中最优值的变化 ## 技术特点

2025-09-28

偏最小二乘回归PLSR Python代码 多变量回归建模

# 偏最小二乘回归PLSR Python代码 多变量回归建模 ## 项目简介 本项目实现了偏最小二乘回归(Partial Least Squares Regression, PLSR)算法。PLSR是一种强大的多变量回归建模方法,特别适用于处理高维数据和多重共线性问题,同时考虑了自变量和因变量的相关结构。 ## 核心算法原理 ### 偏最小二乘回归 (PLSR) PLSR通过提取潜在变量(成分)来建立自变量X和因变量Y之间的关系。与主成分回归(PCR)不同,PLSR在提取成分时同时考虑了X和Y的信息,使得提取的成分对预测Y更有针对性。 ### 算法步骤 1. **初始化**: 对X和Y进行标准化 2. **成分提取**: 迭代提取权重向量、得分和载荷 3. **回归建模**: 在成分空间中建立回归模型 4. **系数计算**: 将成分回归系数转换回原始变量空间 ## 技术特点 - **同时建模**: 在成分提取时同时考虑X和Y的信息 - **多重共线性处理**: 有效处理自变量间的相关性 - **预测导向**: 提取的成分针对预测目标优化 - **可视化分析**: 提供成分分析、系数路径和预测评估图 ## 依赖包 ``` numpy>=1.21.0 matplotlib>=3.5.0 ``` ## 使用方法 ### 基本使用 ```python from plsr import PLSR, generate_multivariate_data # 生成数据 X, y = generate_multivariate_data(n_samples=200, n_features=10) # 创建PLSR模型 plsr = PLSR(n_components=5) p

2025-09-28

信号频谱分析Python实现 FFT频谱图可视化

# 信号频谱分析Python实现 FFT频谱图可视化 本项目实现了信号频谱分析,使用FFT算法进行频谱图可视化。包括各种信号类型的频谱分析、窗函数应用、功率谱密度估计等。 ## 功能特性 - FFT频谱分析 - 多种信号类型分析 - 窗函数比较 - 功率谱密度估计 - 实时频谱分析 ## 使用方法 1. 安装依赖:`pip install -r requirements.txt` 2. 运行主程序:`python main.py` ## 输出文件 生成的图表将保存在output目录中,包括: - fft_spectrum.png:FFT频谱图 - window_comparison.png:窗函数比较 - signal_analysis.png:信号分析

2025-09-28

人工鱼群算法AFSA Python实现 鱼群行为仿生优化

# 人工鱼群算法AFSA Python实现 鱼群行为仿生优化 ## 项目简介 本项目实现了人工鱼群算法(Artificial Fish Swarm Algorithm, AFSA),这是一种基于鱼群觅食行为的仿生优化算法。算法模拟鱼群在水中的觅食、聚群、追尾等行为,通过群体智能寻找问题的最优解。 ## 环境要求 - Python 3.7+ - numpy - matplotlib ## 安装说明 1. 安装依赖包: ```bash pip install numpy matplotlib ``` 2. 运行程序: ```bash python main.py ``` ## 使用说明 直接运行主程序即可: ```bash python main.py ``` 程序将自动进行优化计算,并在控制台输出迭代过程,最终生成可视化结果图片。 ## 项目结构 - `main.py`: 主程序文件,包含完整的AFSA算法实现 ## 技术原理 ### 算法原理 人工鱼群算法模拟鱼群的四种基本行为: 1. **觅食行为**:鱼在感知范围内寻找食物更丰富的区域 2. **聚群行为**:鱼倾向于向群体中心移动,但避免过度拥挤 3. **追尾行为**:鱼跟随更优的邻居向更好的区域移动 4. **随机行为**:当其他行为无法找到更好位置时,随机移动 ### 核心参数 - **鱼群大小**:群体中人工鱼的数量 - **感知范围**:鱼能感知周围环境的距离 - **移动步长**:鱼每次移动的距离 - **拥挤度因子**:控制聚群行为的拥挤程度 - **尝试次数**:觅食行为中随机尝试的次数 ## 示例演示 运行程序后,将生成包含两个子图的图片: -

2025-09-28

Smith图绘制Python代码 射频电路阻抗匹配可视化

# Smith图绘制Python代码 射频电路阻抗匹配可视化 本项目实现了Smith图的绘制,用于射频电路中的阻抗匹配可视化。Smith图是一种用于分析和设计射频电路的图形工具,能够直观地显示阻抗、导纳和反射系数的变换关系。 ## 功能特性 - 绘制标准Smith图网格 - 计算和绘制阻抗点 - 阻抗匹配计算 - 可视化反射系数 - 保存图表为图片文件 ## 使用方法 1. 安装依赖:`pip install -r requirements.txt` 2. 运行主程序:`python main.py` ## 输出文件 生成的图表将保存在output目录中,包括: - smith_chart.png:Smith图可视化 - impedance_matching.png:阻抗匹配示例

2025-09-28

Nyquist图Python实现 控制系统频率响应图表

# Nyquist图Python实现 控制系统频率响应图表 本项目实现了Nyquist图的绘制,用于控制系统频率响应的可视化。Nyquist图是控制理论中的重要工具,用于分析系统的稳定性、增益裕度和相位裕度。 ## 功能特性 - 绘制Nyquist图 - 计算频率响应 - 稳定性分析 - 增益和相位裕度计算 - 多种系统示例 ## 使用方法 1. 安装依赖:`pip install -r requirements.txt` 2. 运行主程序:`python main.py` ## 输出文件 生成的图表将保存在output目录中,包括: - nyquist_plot.png:Nyquist图 - stability_analysis.png:稳定性分析 - multiple_systems.png:多系统比较

2025-09-28

Bode图绘制Python代码 幅频相频特性曲线

# Bode图绘制Python代码 幅频相频特性曲线 本项目实现了Bode图的绘制,用于控制系统幅频和相频特性的可视化。Bode图是控制理论中的重要工具,用于分析系统的频率响应特性。 ## 功能特性 - 绘制幅频特性曲线 - 绘制相频特性曲线 - 计算增益和相位裕度 - 多种系统示例 - 参数变化分析 ## 使用方法 1. 安装依赖:`pip install -r requirements.txt` 2. 运行主程序:`python main.py` ## 输出文件 生成的图表将保存在output目录中,包括: - bode_plot.png:Bode图 - margins_analysis.png:裕度分析 - system_comparison.png:系统比较

2025-09-28

随机梯度下降SGD Python实现 大规模数据优化算法

# 随机梯度下降SGD Python实现 大规模数据优化算法 ## 项目简介 本项目实现了随机梯度下降(Stochastic Gradient Descent, SGD)优化算法,特别适用于大规模数据优化。SGD通过随机选择小批量数据进行梯度计算,大大提高了计算效率,是深度学习和大规模机器学习的核心优化算法。 ## 核心算法原理 ### 随机梯度下降 (SGD) SGD的基本思想是在每一步迭代中,不是使用全部训练数据计算梯度,而是随机选择一个或一小批数据点来近似计算梯度。这种方法大大降低了计算成本,特别适合处理大规模数据集。 ### 算法流程 1. **初始化**: 随机初始化模型参数 2. **迭代优化**: 对每个小批量数据计算梯度并更新参数 3. **收敛检查**: 监控损失函数变化判断是否收敛 4. **学习率调整**: 可选择使用学习率衰减策略 ## 技术特点 - **大规模优化**: 适合处理百万级甚至更大规模的数据集 - **在线学习**: 支持增量学习,可以实时更新模型 - **并行化**: 易于在分布式系统中实现并行计算 - **正则化**: 支持L1/L2正则化防止过拟合 - **自适应学习率**: 支持多种学习率调度策略 ## 依赖包 ``` numpy>=1.21.0 matplotlib>=3.5.0 ``` ## 使用方法 ### 基本使用 ```python from sgd import SGDRegressor, generate_large_dataset # 生成大规模数据 X, y = generate_large_dataset(n_samples=10000, n_features=20) # 创建SGD回归器 sgd

2025-09-28

长短时记忆网络LSTM Python实现 序列数据建模

# 长短时记忆网络LSTM Python实现 序列数据建模 ## 项目简介 本项目实现了基于长短时记忆网络(LSTM)的时序数据建模和预测。通过构建多层LSTM网络,对复杂的序列数据进行有效的学习和预测分析。项目包含完整的数据预处理、模型训练、预测和可视化功能。 ## 环境要求 - Python 3.7+ - TensorFlow 2.15.0 - NumPy 1.24.3 - Matplotlib 3.7.2 - Pandas 2.0.3 - Scikit-learn 1.3.0 - Statsmodels 0.14.0 ## 安装说明 1. 克隆或下载项目文件 2. 安装依赖包: ```bash pip install -r requirements.txt ``` ## 使用说明 1. 运行主程序: ```bash python main.py ``` 2. 程序将自动: - 生成合成时间序列数据 - 构建LSTM模型 - 训练模型 - 进行预测 - 生成可视化结果 ## 项目结构 - `main.py`: 主程序文件,包含完整的LSTM实现 - `requirements.txt`: 项目依赖包列表 - `lstm_training_history.png`: 训练历史可视化 - `lstm_predictions.png`: 预测结果可视化 - `lstm_error_analysis.png`: 误差分析可视化 - `lstm_sequence_analysis.png`: 序列模式分析 ## 技术原理 ### LSTM基本原理 长短时记忆网络是一种特殊的循环神经网络,通过引入输入门、遗忘门和输出

2025-09-28

逻辑回归算法Python实现 二分类和多分类模型

# 逻辑回归算法Python实现 二分类和多分类模型 ## 项目简介 本项目实现了逻辑回归(Logistic Regression)算法,这是一种广泛使用的线性分类算法。通过Sigmoid函数将线性回归的结果映射到(0,1)区间,实现二分类和多分类任务。支持L1/L2正则化,采用梯度下降优化。 ## 环境要求 - Python 3.7+ - numpy - matplotlib ## 安装说明 1. 安装依赖包: ```bash pip install numpy matplotlib ``` 2. 运行程序: ```bash python main.py ``` ## 使用说明 直接运行主程序即可: ```bash python main.py ``` 程序将自动演示二分类和多分类任务,输出训练过程和准确率,最终生成可视化图片。 ## 项目结构 - `main.py`: 主程序文件,包含完整的逻辑回归实现和演示 ## 技术原理 ### 算法原理 逻辑回归基于Sigmoid函数: σ(z) = 1 / (1 + e^(-z)) 其中 z = w·x + b 损失函数为二元交叉熵: L = -[y·log(σ(z)) + (1-y)·log(1-σ(z))] ### 优化方法 - **梯度下降**:使用批量梯度下降更新参数 - **正则化**:支持L1和L2正则化防止过拟合 - **收敛判断**:基于损失变化判断收敛 ### 多分类策略 采用一对多(One-vs-Rest)策略: - 为每个类别训练一个二分类器 - 预测时选择概率最高的类别 ### 核心参数 - **learning_rate**:

2025-09-28

细菌觅食优化算法BFO Python代码 细菌群体智能算法

# 细菌觅食优化算法BFO Python代码 细菌群体智能算法 ## 项目简介 本项目实现了细菌觅食优化算法(Bacterial Foraging Optimization Algorithm, BFO),这是一种模拟细菌在营养梯度中觅食行为的仿生优化算法。算法通过细菌的趋化、繁殖和消除-分散三种行为来搜索最优解。 ## 环境要求 - Python 3.7+ - numpy - matplotlib ## 安装说明 1. 安装依赖包: ```bash pip install numpy matplotlib ``` 2. 运行程序: ```bash python main.py ``` ## 使用说明 直接运行主程序即可: ```bash python main.py ``` 程序将自动进行优化计算,并在控制台输出迭代过程,最终生成可视化结果图片。 ## 项目结构 - `main.py`: 主程序文件,包含完整的BFO算法实现 ## 技术原理 ### 算法原理 细菌觅食优化算法模拟细菌的三种主要行为: 1. **趋化行为**:细菌通过翻滚和游动在营养梯度中寻找食物 2. **繁殖行为**:健康度好的细菌分裂产生后代 3. **消除-分散行为**:部分细菌被随机重新分布到搜索空间 ### 核心参数 - **种群大小**:细菌的数量 - **趋化步数**:每代中每个细菌的趋化操作次数 - **游动长度**:细菌沿一个方向连续游动的最大步数 - **移动步长**:细菌每次移动的距离 - **繁殖比例**:参与繁殖的细菌比例 - **分散概率**:细菌被重新分布的概率 ## 示例演示 运行程序后,将生成包含两个子图的图片: -

2025-09-28

文化算法CA Python代码 文化进化群体智能优化

# 文化算法CA Python代码 文化进化群体智能优化 ## 项目简介 本项目实现了文化算法(Cultural Algorithm, CA),这是一种双层进化算法,包含种群空间和信念空间。信念空间存储和更新文化知识,指导种群空间的进化过程,具有良好的全局搜索能力和文化学习机制。 ## 环境要求 - Python 3.7+ - numpy - matplotlib ## 安装说明 1. 安装依赖包: ```bash pip install numpy matplotlib ``` 2. 运行程序: ```bash python main.py ``` ## 使用说明 直接运行主程序即可: ```bash python main.py ``` 程序将自动进行优化计算,并在控制台输出迭代过程,最终生成可视化结果图片。 ## 项目结构 - `main.py`: 主程序文件,包含完整的CA算法实现 ## 技术原理 ### 算法原理 文化算法采用双层结构: 1. **种群空间**:执行遗传操作(选择、交叉、变异) 2. **信念空间**:存储文化知识(规范、情境、拓扑知识),影响种群进化 ### 信念空间知识 - **规范知识**:定义可接受解的范围 - **情境知识**:存储当前最优解 - **拓扑知识**:维护优秀解的集合 ### 核心参数 - **种群大小**:个体的数量 - **变异强度**:变异操作的幅度 - **接受率**:个体进入信念空间的概率 ## 示例演示 运行程序后,将生成包含两个子图的图片: - 左侧:最终种群分布图,橙色点表示个体的位置,红色星号表示情境知识 - 右侧:适应度收敛曲线,显示优化过

2025-09-28

循环神经网络RNN Python代码 时间序列预测网络

# 循环神经网络RNN Python代码 时间序列预测网络 ## 项目简介 本项目实现了基于循环神经网络(RNN)的时序数据预测模型。通过构建多层RNN网络,对时间序列数据进行有效的预测分析。项目包含完整的数据预处理、模型训练、预测和可视化功能。 ## 环境要求 - Python 3.7+ - TensorFlow 2.15.0 - NumPy 1.24.3 - Matplotlib 3.7.2 - Pandas 2.0.3 - Scikit-learn 1.3.0 ## 安装说明 1. 克隆或下载项目文件 2. 安装依赖包: ```bash pip install -r requirements.txt ``` ## 使用说明 1. 运行主程序: ```bash python main.py ``` 2. 程序将自动: - 生成合成时间序列数据 - 构建RNN模型 - 训练模型 - 进行预测 - 生成可视化结果 ## 项目结构 - `main.py`: 主程序文件,包含完整的RNN实现 - `requirements.txt`: 项目依赖包列表 - `rnn_training_history.png`: 训练历史可视化 - `rnn_predictions.png`: 预测结果可视化 - `rnn_error_analysis.png`: 误差分析可视化 ## 技术原理 ### RNN基本原理 循环神经网络是一种专门处理序列数据的神经网络,通过维护内部状态来捕捉时间依赖关系。 ### 模型架构 - 输入层:时间序列数据 - RNN层:多个SimpleRNN层,包含Dropout正则化 - 输出层:单

2025-09-28

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除