岭回归和Lasso Python实现 正则化回归技术
# 岭回归和Lasso Python实现 正则化回归技术
## 项目简介
本项目实现了岭回归(Ridge Regression)和Lasso回归两种正则化线性回归算法。岭回归使用L2正则化防止过拟合,Lasso回归使用L1正则化同时进行特征选择。通过比较两种方法的效果,展示正则化技术在回归分析中的重要性。
## 环境要求
- Python 3.7+
- numpy
- matplotlib
## 安装说明
1. 安装依赖包:
```bash
pip install numpy matplotlib
```
2. 运行程序:
```bash
python main.py
```
## 使用说明
直接运行主程序即可:
```bash
python main.py
```
程序将自动比较岭回归和Lasso回归的性能,展示系数路径和预测效果。
## 项目结构
- `main.py`: 主程序文件,包含完整的正则化回归实现和演示
## 技术原理
### 岭回归(Ridge Regression)
**目标函数**:
min ||y - Xw||² + α||w||²
**特点**:
- L2正则化
- 收缩所有系数,但不使其为零
- 适合多重共线性问题
- 解析解存在
### Lasso回归(Least Absolute Shrinkage and Selection Operator)
**目标函数**:
min ||y - Xw||² + α||w||₁
**特点**:
- L1正则化
- 可以将系数压缩至零,实现特征选择
- 产生稀疏解
- 使用坐标下降法求解
### 超参数选择
- **α (alpha)**:
多项式回归Python代码 非线性回归拟合演示
# 多项式回归Python代码 非线性回归拟合演示
## 项目简介
本项目实现了多项式回归(Polynomial Regression)算法,通过将原始特征转换为多项式特征,再应用线性回归来拟合非线性关系。项目演示了不同阶数多项式的拟合效果,并分析了过拟合问题,是理解偏差-方差权衡的重要示例。
## 环境要求
- Python 3.7+
- numpy
- matplotlib
## 安装说明
1. 安装依赖包:
```bash
pip install numpy matplotlib
```
2. 运行程序:
```bash
python main.py
```
## 使用说明
直接运行主程序即可:
```bash
python main.py
```
程序将自动比较不同阶数多项式的拟合效果,展示过拟合现象。
## 项目结构
- `main.py`: 主程序文件,包含完整的多项式回归实现和演示
## 技术原理
### 多项式回归原理
将原始特征x转换为多项式特征:
- 1阶:x
- 2阶:x, x²
- 3阶:x, x², x³
- ...
然后应用线性回归:
y = w₀ + w₁x + w₂x² + w₃x³ + ...
### 偏差-方差权衡
- **低阶多项式**:高偏差,低方差(欠拟合)
- **高阶多项式**:低偏差,高方差(过拟合)
- **最佳阶数**:平衡偏差和方差
### 过拟合识别
- 训练误差低,测试误差高
- 模型在训练数据上表现完美,但在新数据上泛化能力差
- 残差分析显示系统性偏差
## 示例演示
运行程序后,将生成三个可视化图片:
### 多项式拟合对比
四个子图
卷积神经网络CNN Python实现 图像分类基础模型
# 卷积神经网络CNN Python实现 图像分类基础模型
## 项目简介
- 功能描述:实现基于PyTorch的卷积神经网络,用于MNIST手写数字图像分类任务
- 技术特点:包含数据预处理、模型构建、训练过程、可视化分析等完整流程
- 适用场景:图像分类入门学习、CNN基础原理理解、深度学习实践
## 环境要求
- Python版本:3.8+
- 操作系统要求:Windows/Linux/MacOS
- 硬件要求:建议配备GPU以加速训练
## 安装说明
1. 安装Python环境(推荐使用conda创建虚拟环境)
2. 克隆或下载项目文件
3. 安装依赖包:
```bash
pip install -r requirements.txt
```
4. 验证安装:运行 `python main.py` 应能正常启动程序
## 使用说明
1. 基本用法:直接运行 `python main.py` 即可开始训练和测试
2. 高级功能:
- 修改超参数调整模型性能
- 查看生成的训练曲线和混淆矩阵
- 分析模型在测试集上的表现
## 项目结构
- `main.py`:主程序文件,包含完整CNN实现
- `requirements.txt`:项目依赖包列表
- `README.md`:项目说明文档
## 示例演示
运行程序后将生成以下可视化结果:
- 训练损失和准确率曲线
- 混淆矩阵热力图
- 模型预测结果示例
## 技术原理
- 算法说明:使用卷积层提取图像特征,全连接层进行分类
- 核心技术介绍:CNN架构设计、反向传播优化、数据增强
- 参考文献:PyTorch官方文档、深度学习相关教材
AdaBoost集成学习Python代码 自适应提升算法演示
# AdaBoost集成学习Python代码 自适应提升算法演示
## 项目简介
本项目实现了AdaBoost(Adaptive Boosting)集成学习算法。AdaBoost是一种经典的提升算法,通过迭代训练弱学习器并调整样本权重来构建强分类器,是机器学习中最具影响力的算法之一。
## 核心算法原理
### AdaBoost算法
AdaBoost的核心思想是:
1. **初始化**: 所有训练样本具有相同的权重
2. **迭代训练**: 训练弱学习器,计算其在加权样本上的错误率
3. **计算权重**: 根据错误率计算学习器的权重
4. **更新权重**: 提高错分样本的权重,降低正确样本的权重
5. **组合预测**: 加权组合所有弱学习器的预测
### 算法流程
1. 初始化样本权重 D₁(i) = 1/N
2. 对于 t = 1 到 T:
- 训练弱学习器 h_t 使用权重 D_t
- 计算错误率 ε_t = Σ D_t(i) * I(y_i ≠ h_t(x_i))
- 计算学习器权重 α_t = ½ ln((1-ε_t)/ε_t)
- 更新样本权重 D_{t+1}(i) = D_t(i) * exp(α_t * I(y_i ≠ h_t(x_i)))
- 归一化 D_{t+1}
3. 最终分类器 H(x) = sign(Σ α_t * h_t(x))
## 技术特点
- **自适应性**: 根据前一轮的表现调整样本权重
- **序列训练**: 学习器按顺序训练,后面的学习器纠正前面的错误
- **加权投票**: 表现好的学习器获得更高的权重
- **理论保证**: 提供训练误差的理论上界
- **鲁棒性**: 对异常值相对不敏感
## 依赖包
`
K近邻算法KNN Python实现 分类和回归任务可视化
# K近邻算法KNN Python实现 分类和回归任务可视化
## 项目简介
本项目实现了K近邻(K-Nearest Neighbors, KNN)算法,这是一种简单有效的监督学习算法。KNN既可以用于分类任务,也可以用于回归任务,通过计算测试样本与训练样本的距离,找到k个最近邻居进行预测。
## 环境要求
- Python 3.7+
- numpy
- matplotlib
## 安装说明
1. 安装依赖包:
```bash
pip install numpy matplotlib
```
2. 运行程序:
```bash
python main.py
```
## 使用说明
直接运行主程序即可:
```bash
python main.py
```
程序将自动演示分类和回归两个任务,并在控制台输出结果,最终生成可视化图片。
## 项目结构
- `main.py`: 主程序文件,包含完整的KNN算法实现和演示
## 技术原理
### 算法原理
KNN算法的核心思想是"近朱者赤":
1. **距离计算**:计算测试样本与所有训练样本的距离
2. **近邻选择**:选择k个距离最近的训练样本
3. **预测决策**:
- 分类:多数投票决定类别
- 回归:平均值作为预测结果
### 距离度量
支持多种距离度量:
- **欧几里得距离**:直线距离
- **曼哈顿距离**:网格距离
- **闵可夫斯基距离**: generalized距离
### 核心参数
- **k值**:近邻数量,影响模型复杂度
- **距离度量**:决定样本相似性的计算方式
## 示例演示
运行程序后,将生成两个可视化图片:
萤火虫群优化算法FFOA Python实现 萤火虫群体行为算法
# 萤火虫群优化算法FFOA Python实现 萤火虫群体行为算法
## 项目简介
- 功能描述:实现萤火虫群优化算法(Firefly Optimization Algorithm, FFOA),模拟萤火虫发光吸引行为进行全局优化
- 技术特点:群智能优化算法,支持多维函数优化,可视化收敛过程和搜索空间
- 适用场景:函数优化、参数寻优、工程设计优化等
## 环境要求
- Python版本:3.7+
- 操作系统要求:Windows/Linux/macOS
- 硬件要求:无特殊要求
## 安装说明
1. 安装Python依赖:
```
pip install -r requirements.txt
```
2. 运行程序:
```
python main.py
```
## 使用说明
1. 基本用法:直接运行main.py即可开始优化演示
2. 高级功能:
- 修改func变量选择不同的测试函数(rastrigin或sphere)
- 调整pop_size、max_iter等参数控制算法性能
- 可视化结果自动保存为图片文件
## 项目结构
- main.py:主程序文件,包含FFOA算法实现和可视化
- requirements.txt:Python依赖包列表
- convergence.png:算法收敛曲线图(运行后生成)
- search_space.png:搜索空间可视化图(运行后生成)
## 示例演示
运行程序后将生成:
- 控制台输出:最优解和适应度值
- convergence.png:显示算法收敛过程的曲线图
- search_space.png:二维搜索空间的等高线图,显示萤火虫位置和最优解
## 技术原
聚类分析Silhouette系数Python代码 聚类质量评估图表
# 聚类分析Silhouette系数Python代码 聚类质量评估图表
## 项目简介
- 功能描述:实现K-means聚类分析,计算Silhouette系数并生成质量评估图表
- 技术特点:使用scikit-learn进行聚类分析,包含多种聚类质量评估可视化
- 适用场景:数据聚类分析,聚类结果质量评估,最优聚类数确定
## 环境要求
- Python版本:3.7+
- 操作系统要求:Windows/Linux/macOS
- 硬件要求:无特殊要求
## 安装说明
1. 安装Python依赖:
```
pip install -r requirements.txt
```
2. 配置说明:无需额外配置
3. 验证安装:运行main.py,如果无错误则安装成功
## 使用说明
1. 基本用法:直接运行main.py,程序会生成示例数据并进行聚类分析
2. 高级功能:可以修改代码中的数据来分析自己的数据集
3. 配置选项:可在代码中调整聚类数和评估参数
## 项目结构
- main.py:主程序文件,包含聚类分析和可视化逻辑
- requirements.txt:Python依赖包列表
- silhouette_plot.png:Silhouette系数图
- clustering_analysis.png:综合聚类分析图表
## 示例演示
运行程序后会生成聚类结果和质量评估可视化图表。
## 技术原理
- 算法说明:K-means聚类算法,Silhouette系数评估聚类质量
- 核心技术介绍:使用scikit-learn的KMeans和silhouette_samples
- 参考文献:聚类分析标准方法和质量评估指标
鸟群觅食算法BSA Python实现 鸟群行为群体智能算法
# 鸟群觅食算法BSA Python实现 鸟群行为群体智能算法
## 项目简介
- 功能描述:实现鸟群觅食算法(Bird Swarm Algorithm, BSA),模拟鸟群觅食行为进行全局优化
- 技术特点:群智能优化算法,支持多维函数优化,可视化收敛过程和搜索空间
- 适用场景:函数优化、参数寻优、工程设计优化等
## 环境要求
- Python版本:3.7+
- 操作系统要求:Windows/Linux/macOS
- 硬件要求:无特殊要求
## 安装说明
1. 安装Python依赖:
```
pip install -r requirements.txt
```
2. 运行程序:
```
python main.py
```
## 使用说明
1. 基本用法:直接运行main.py即可开始优化演示
2. 高级功能:
- 修改func变量选择不同的测试函数(rastrigin或sphere)
- 调整pop_size、max_iter等参数控制算法性能
- 可视化结果自动保存为图片文件
## 项目结构
- main.py:主程序文件,包含BSA算法实现和可视化
- requirements.txt:Python依赖包列表
- convergence.png:算法收敛曲线图(运行后生成)
- search_space.png:搜索空间可视化图(运行后生成)
## 示例演示
运行程序后将生成:
- 控制台输出:最优解和适应度值
- convergence.png:显示算法收敛过程的曲线图
- search_space.png:二维搜索空间的等高线图,显示鸟群位置和最优解
## 技术原理
鸟群觅食算法模拟鸟群的觅食行为:
鲨鱼优化算法SOA Python代码 鲨鱼捕食策略优化算法
# 鲨鱼优化算法SOA Python代码 鲨鱼捕食策略优化算法
## 项目简介
- 功能描述:实现鲨鱼优化算法(Shark Optimization Algorithm, SOA),模拟鲨鱼捕食行为进行全局优化
- 技术特点:群智能优化算法,支持多维函数优化,可视化收敛过程和搜索空间
- 适用场景:函数优化、参数寻优、工程设计优化等
## 环境要求
- Python版本:3.7+
- 操作系统要求:Windows/Linux/macOS
- 硬件要求:无特殊要求
## 安装说明
1. 安装Python依赖:
```
pip install -r requirements.txt
```
2. 运行程序:
```
python main.py
```
## 使用说明
1. 基本用法:直接运行main.py即可开始优化演示
2. 高级功能:
- 修改func变量选择不同的测试函数(rastrigin或sphere)
- 调整pop_size、max_iter等参数控制算法性能
- 可视化结果自动保存为图片文件
## 项目结构
- main.py:主程序文件,包含SOA算法实现和可视化
- requirements.txt:Python依赖包列表
- convergence.png:算法收敛曲线图(运行后生成)
- search_space.png:搜索空间可视化图(运行后生成)
## 示例演示
运行程序后将生成:
- 控制台输出:最优解和适应度值
- convergence.png:显示算法收敛过程的曲线图
- search_space.png:二维搜索空间的等高线图,显示鲨鱼位置和最优解
## 技术原理
鲨鱼优化算法模拟鲨
饼图百分比可视化Python实现 数据比例分布图表
# 饼图百分比可视化Python实现 数据比例分布图表
## 项目简介
- 功能描述:使用matplotlib创建各种样式的饼图,适用于数据比例分布的可视化展示
- 技术特点:支持多种饼图样式、数据分布分析、自动保存图表
- 适用场景:比例数据展示、分类统计可视化、报告图表制作
## 环境要求
- Python版本:3.7+
- 操作系统:Windows/Linux/macOS
- 硬件要求:标准PC配置
## 安装说明
1. 安装Python环境(推荐使用Anaconda)
2. 克隆或下载项目文件
3. 安装依赖包:
```bash
pip install -r requirements.txt
```
4. 运行程序:
```bash
python main.py
```
## 使用说明
1. 基本用法:
- 直接运行main.py即可生成示例图表
- 图表自动保存到output目录
2. 高级功能:
- 支持自定义数据输入
- 多种饼图样式选择
- 数据分布分析报告输出
3. 配置选项:
- 可修改数据生成参数
- 自定义图表颜色和样式
- 调整输出图片分辨率
## 项目结构
- main.py:主程序文件,包含所有核心功能
- requirements.txt:Python依赖包列表
- output/:输出目录,存放生成的图表文件
- README.md:项目说明文档
## 示例演示
程序运行后将在output目录生成以下图表:
- 基础饼图
- 环形饼图
- 分离式饼图
- 嵌套饼图
- 多饼图对比
- 3D饼图
- 百分比柱状图
## 技术原理
-
迷宫生成器Python代码 递归回溯算法随机迷宫生成
# 迷宫生成器Python代码 递归回溯算法随机迷宫生成
## 项目简介
- 功能描述:使用递归回溯算法生成随机迷宫
- 技术特点:递归算法实现,matplotlib可视化
- 适用场景:算法学习,游戏开发
## 环境要求
- Python版本:3.6+
- 操作系统要求:Windows/Linux/Mac
## 安装说明
1. 安装依赖:pip install -r requirements.txt
2. 运行程序:python main.py
## 使用说明
运行main.py后,会生成随机迷宫并保存可视化图片maze.png
## 项目结构
- main.py:主程序
- requirements.txt:依赖
- maze.png:生成的迷宫图片
## 示例演示
运行后查看maze.png文件
## 技术原理
递归回溯算法:深度优先搜索生成迷宫,确保连通性。
路径分析Path Analysis Python代码 结构方程模型可视化
# 路径分析Path Analysis Python代码 结构方程模型可视化
## 项目简介
- 功能描述:实现路径分析,构建和可视化结构方程模型中的路径关系
- 技术特点:使用回归分析构建路径模型,包含路径图可视化
- 适用场景:因果关系分析,结构方程建模,路径系数估计
## 环境要求
- Python版本:3.7+
- 操作系统要求:Windows/Linux/macOS
- 硬件要求:无特殊要求
## 安装说明
1. 安装Python依赖:
```
pip install -r requirements.txt
```
2. 配置说明:无需额外配置
3. 验证安装:运行main.py,如果无错误则安装成功
## 使用说明
1. 基本用法:直接运行main.py,程序会生成示例数据并进行路径分析
2. 高级功能:可以修改代码中的模型结构来分析自己的路径模型
3. 配置选项:可在代码中调整变量关系和路径设置
## 项目结构
- main.py:主程序文件,包含路径分析和可视化逻辑
- requirements.txt:Python依赖包列表
- path_analysis.png:路径分析综合图表
## 示例演示
运行程序后会生成路径图,直观展示变量间的因果关系。
## 技术原理
- 算法说明:基于回归的路径分析,路径系数计算
- 核心技术介绍:使用NetworkX进行路径可视化
- 参考文献:结构方程模型和路径分析标准方法
蝴蝶优化算法BOA Python实现 蝴蝶迁徙行为仿生优化
# 蝴蝶优化算法BOA Python实现 蝴蝶迁徙行为仿生优化
## 项目简介
- 功能描述:实现蝴蝶优化算法(Butterfly Optimization Algorithm, BOA),模拟蝴蝶迁徙和觅食行为进行全局优化
- 技术特点:群智能优化算法,支持多维函数优化,可视化收敛过程和搜索空间
- 适用场景:函数优化、参数寻优、工程设计优化等
## 环境要求
- Python版本:3.7+
- 操作系统要求:Windows/Linux/macOS
- 硬件要求:无特殊要求
## 安装说明
1. 安装Python依赖:
```
pip install -r requirements.txt
```
2. 运行程序:
```
python main.py
```
## 使用说明
1. 基本用法:直接运行main.py即可开始优化演示
2. 高级功能:
- 修改func变量选择不同的测试函数(rastrigin或sphere)
- 调整pop_size、max_iter等参数控制算法性能
- 可视化结果自动保存为图片文件
## 项目结构
- main.py:主程序文件,包含BOA算法实现和可视化
- requirements.txt:Python依赖包列表
- convergence.png:算法收敛曲线图(运行后生成)
- search_space.png:搜索空间可视化图(运行后生成)
## 示例演示
运行程序后将生成:
- 控制台输出:最优解和适应度值
- convergence.png:显示算法收敛过程的曲线图
- search_space.png:二维搜索空间的等高线图,显示蝴蝶位置和最优解
## 技术原理
蝴蝶
蛙跳算法SFLA Python代码 青蛙跳跃优化算法演示
# 蛙跳算法SFLA Python代码 青蛙跳跃优化算法演示
## 项目简介
- 功能描述:实现蛙跳算法(Shuffled Frog Leaping Algorithm, SFLA),模拟青蛙跳跃觅食行为进行全局优化
- 技术特点:群智能优化算法,支持多维函数优化,可视化收敛过程和搜索空间
- 适用场景:函数优化、参数寻优、工程设计优化等
## 环境要求
- Python版本:3.7+
- 操作系统要求:Windows/Linux/macOS
- 硬件要求:无特殊要求
## 安装说明
1. 安装Python依赖:
```
pip install -r requirements.txt
```
2. 运行程序:
```
python main.py
```
## 使用说明
1. 基本用法:直接运行main.py即可开始优化演示
2. 高级功能:
- 修改func变量选择不同的测试函数(rastrigin或sphere)
- 调整pop_size、max_iter等参数控制算法性能
- 可视化结果自动保存为图片文件
## 项目结构
- main.py:主程序文件,包含SFLA算法实现和可视化
- requirements.txt:Python依赖包列表
- convergence.png:算法收敛曲线图(运行后生成)
- search_space.png:搜索空间可视化图(运行后生成)
## 示例演示
运行程序后将生成:
- 控制台输出:最优解和适应度值
- convergence.png:显示算法收敛过程的曲线图
- search_space.png:二维搜索空间的等高线图,显示青蛙位置和最优解
## 技术原理
蛙跳算法模
等高线图Contour Plot Python代码 三维数据等高线可视化
# 等高线图Contour Plot Python代码 三维数据等高线可视化
## 项目简介
本项目实现了基于Python和matplotlib的三维数据等高线可视化工具。通过等高线图展示三维数据的层次结构,帮助用户直观理解数据的空间分布和变化趋势。
## 主要功能
### 1. 基础等高线图
- 填充等高线图
- 线条等高线图
- 带标签的等高线图
### 2. 三维数据可视化
- 数学函数等高线图
- 地形数据等高线图
- 统计数据等高线图
### 3. 高级等高线图
- 多层等高线叠加
- 彩色填充等高线
- 带颜色条的等高线图
### 4. 数据分析功能
- 等高线密度分析
- 梯度计算和可视化
- 极值点识别
## 技术特点
- **多种等高线样式**: 支持填充、线条、标签等多种展示方式
- **颜色映射**: 使用多种colormap展示数据层次
- **平滑插值**: 基于scipy的插值算法实现平滑等高线
- **高分辨率输出**: 300 DPI高质量图像保存
- **中文标签支持**: 完整的中文界面和注释
## 安装依赖
```bash
pip install -r requirements.txt
```
## 使用方法
直接运行主程序:
```bash
python main.py
```
程序将自动生成多种三维数据并创建等高线图,保存在output目录中。
## 输出文件
程序执行后将在output目录生成以下图像文件:
- `basic_contour.png`: 基础等高线图
- `filled_contour.png`: 填充等高线图
- `contour_labels.png`: 带标签等高线图
直方图频率分布Python代码 连续数据分组统计可视化
# 直方图频率分布Python代码 连续数据分组统计可视化
## 项目简介
- 功能描述:使用matplotlib创建各种样式的直方图,适用于连续数据频率分布的可视化展示
- 技术特点:支持多种直方图样式、密度估计、统计分析、自动保存图表
- 适用场景:数据分布分析、统计图表制作、科研数据可视化
## 环境要求
- Python版本:3.7+
- 操作系统:Windows/Linux/macOS
- 硬件要求:标准PC配置
## 安装说明
1. 安装Python环境(推荐使用Anaconda)
2. 克隆或下载项目文件
3. 安装依赖包:
```bash
pip install -r requirements.txt
```
4. 运行程序:
```bash
python main.py
```
## 使用说明
1. 基本用法:
- 直接运行main.py即可生成示例图表
- 图表自动保存到output目录
2. 高级功能:
- 支持多种分布类型数据生成
- 多种直方图样式选择
- 完整的统计分析报告输出
3. 配置选项:
- 可修改数据生成参数和分布类型
- 自定义图表颜色和样式
- 调整直方图bins数量
## 项目结构
- main.py:主程序文件,包含所有核心功能
- requirements.txt:Python依赖包列表
- output/:输出目录,存放生成的图表文件
- README.md:项目说明文档
## 示例演示
程序运行后将在output目录生成以下图表:
- 基础直方图
- 密度直方图
- 累积频率直方图
- 多组数据对比直方图
- 分组直方图
生存分析Log-rank检验Python代码 Kaplan-Meier曲线比较
# 生存分析Log-rank检验Python代码 Kaplan-Meier曲线比较
## 项目简介
- 功能描述:实现Kaplan-Meier生存曲线估计和Log-rank检验,比较不同组别的生存差异
- 技术特点:使用lifelines库进行生存分析,包含多种生存数据可视化
- 适用场景:医学研究、工程可靠性分析、客户流失分析等生存时间数据分析
## 环境要求
- Python版本:3.7+
- 操作系统要求:Windows/Linux/macOS
- 硬件要求:无特殊要求
## 安装说明
1. 安装Python依赖:
```
pip install -r requirements.txt
```
2. 配置说明:无需额外配置
3. 验证安装:运行main.py,如果无错误则安装成功
## 使用说明
1. 基本用法:直接运行main.py,程序会生成示例生存数据并进行分析
2. 高级功能:可以修改代码中的数据来分析自己的生存数据
3. 配置选项:可在代码中调整分组变量和生存时间设置
## 项目结构
- main.py:主程序文件,包含生存分析和可视化逻辑
- requirements.txt:Python依赖包列表
- km_curves.png:Kaplan-Meier生存曲线图
- logrank_test.png:Log-rank检验结果可视化
- survival_analysis.png:综合生存分析图表
## 示例演示
运行程序后会生成生存曲线图表,直观展示不同组别的生存概率和统计检验结果。
## 技术原理
- 算法说明:Kaplan-Meier估计量计算生存概率,Log-rank检验比较生存曲线差异
- 核心技术介绍:使用lifelines库的Kapla
猴子优化算法MOA Python代码 猴子觅食行为优化算法
# 猴子优化算法MOA Python代码 猴子觅食行为优化算法
## 项目简介
- 功能描述:实现猴子优化算法(Monkey Optimization Algorithm, MOA),模拟猴子觅食行为进行全局优化
- 技术特点:群智能优化算法,支持多维函数优化,可视化收敛过程和搜索空间
- 适用场景:函数优化、参数寻优、工程设计优化等
## 环境要求
- Python版本:3.7+
- 操作系统要求:Windows/Linux/macOS
- 硬件要求:无特殊要求
## 安装说明
1. 安装Python依赖:
```
pip install -r requirements.txt
```
2. 运行程序:
```
python main.py
```
## 使用说明
1. 基本用法:直接运行main.py即可开始优化演示
2. 高级功能:
- 修改func变量选择不同的测试函数(rastrigin或sphere)
- 调整pop_size、max_iter等参数控制算法性能
- 可视化结果自动保存为图片文件
## 项目结构
- main.py:主程序文件,包含MOA算法实现和可视化
- requirements.txt:Python依赖包列表
- convergence.png:算法收敛曲线图(运行后生成)
- search_space.png:搜索空间可视化图(运行后生成)
## 示例演示
运行程序后将生成:
- 控制台输出:最优解和适应度值
- convergence.png:显示算法收敛过程的曲线图
- search_space.png:二维搜索空间的等高线图,显示猴子位置和最优解
## 技术原理
猴子优化算法模拟
狼群狩猎算法WHA Python代码 狼群合作狩猎仿生优化
# 狼群狩猎算法WHA Python代码 狼群合作狩猎仿生优化
## 项目简介
- 功能描述:实现狼群狩猎算法(Wolf Hunting Algorithm, WHA),模拟狼群合作狩猎行为进行全局优化
- 技术特点:群智能优化算法,支持多维函数优化,可视化收敛过程和搜索空间
- 适用场景:函数优化、参数寻优、工程设计优化等
## 环境要求
- Python版本:3.7+
- 操作系统要求:Windows/Linux/macOS
- 硬件要求:无特殊要求
## 安装说明
1. 安装Python依赖:
```
pip install -r requirements.txt
```
2. 运行程序:
```
python main.py
```
## 使用说明
1. 基本用法:直接运行main.py即可开始优化演示
2. 高级功能:
- 修改func变量选择不同的测试函数(rastrigin或sphere)
- 调整pop_size、max_iter等参数控制算法性能
- 可视化结果自动保存为图片文件
## 项目结构
- main.py:主程序文件,包含WHA算法实现和可视化
- requirements.txt:Python依赖包列表
- convergence.png:算法收敛曲线图(运行后生成)
- search_space.png:搜索空间可视化图(运行后生成)
## 示例演示
运行程序后将生成:
- 控制台输出:最优解和适应度值
- convergence.png:显示算法收敛过程的曲线图
- search_space.png:二维搜索空间的等高线图,显示狼群位置和最优解
## 技术原理
狼群狩猎算法模拟狼群的狩猎
狮群优化算法LOA Python实现 狮群领土划分仿生算法
# 狮群优化算法LOA Python实现 狮群领土划分仿生算法
## 项目简介
- 功能描述:实现狮群优化算法(Lion Optimization Algorithm, LOA),模拟狮群领土划分和狩猎行为进行全局优化
- 技术特点:群智能优化算法,支持多维函数优化,可视化收敛过程和搜索空间
- 适用场景:函数优化、参数寻优、工程设计优化等
## 环境要求
- Python版本:3.7+
- 操作系统要求:Windows/Linux/macOS
- 硬件要求:无特殊要求
## 安装说明
1. 安装Python依赖:
```
pip install -r requirements.txt
```
2. 运行程序:
```
python main.py
```
## 使用说明
1. 基本用法:直接运行main.py即可开始优化演示
2. 高级功能:
- 修改func变量选择不同的测试函数(rastrigin或sphere)
- 调整pop_size、max_iter等参数控制算法性能
- 可视化结果自动保存为图片文件
## 项目结构
- main.py:主程序文件,包含LOA算法实现和可视化
- requirements.txt:Python依赖包列表
- convergence.png:算法收敛曲线图(运行后生成)
- search_space.png:搜索空间可视化图(运行后生成)
## 示例演示
运行程序后将生成:
- 控制台输出:最优解和适应度值
- convergence.png:显示算法收敛过程的曲线图
- search_space.png:二维搜索空间的等高线图,显示狮群位置和最优解
## 技术原理
狮群优化算
图像修复算法Python代码 inpainting图像修复演示
# 图像修复算法Python代码 inpainting图像修复演示
## 项目简介
- 功能描述:图像修复和inpainting
- 技术特点:基于OpenCV和numpy实现,包含丰富的可视化功能
- 适用场景:图像处理教学、计算机视觉应用等
## 环境要求
- Python版本:3.7+
- 操作系统要求:Windows/Linux/macOS
- 硬件要求:无特殊要求
## 安装说明
1. 安装Python依赖:
```
pip install -r requirements.txt
```
2. 配置说明:无需额外配置,直接运行即可
3. 验证安装:运行main.py,如果无错误提示则安装成功
## 使用说明
1. 基本用法:
- 运行main.py启动程序
- 程序会自动处理示例图像并生成分析结果
2. 高级功能:
- 支持自定义图像路径
- 可选择不同的分析参数
- 支持批量处理多个图像
3. 配置选项:
- 修改main.py中的image_path变量指定输入图像
## 项目结构
- main.py:主程序入口,包含完整的分析功能
- data/:存放测试图像文件
- output/:存放分析结果和可视化图表
- requirements.txt:Python依赖包列表
## 示例演示
程序运行后会生成各种分析结果的可视化图表。
## 技术原理
- 图像修复和inpainting
图像纹理分析Python代码 GLCM灰度共生矩阵
# 图像纹理分析Python代码 GLCM灰度共生矩阵
## 项目简介
- 功能描述:纹理分析和GLCM计算
- 技术特点:基于OpenCV和numpy实现,包含丰富的可视化功能
- 适用场景:图像处理教学、计算机视觉应用等
## 环境要求
- Python版本:3.7+
- 操作系统要求:Windows/Linux/macOS
- 硬件要求:无特殊要求
## 安装说明
1. 安装Python依赖:
```
pip install -r requirements.txt
```
2. 配置说明:无需额外配置,直接运行即可
3. 验证安装:运行main.py,如果无错误提示则安装成功
## 使用说明
1. 基本用法:
- 运行main.py启动程序
- 程序会自动处理示例图像并生成分析结果
2. 高级功能:
- 支持自定义图像路径
- 可选择不同的分析参数
- 支持批量处理多个图像
3. 配置选项:
- 修改main.py中的image_path变量指定输入图像
## 项目结构
- main.py:主程序入口,包含完整的分析功能
- data/:存放测试图像文件
- output/:存放分析结果和可视化图表
- requirements.txt:Python依赖包列表
## 示例演示
程序运行后会生成各种分析结果的可视化图表。
## 技术原理
- 纹理分析和GLCM计算
图像矩特征计算Python实现 形状描述符分析
# 图像矩特征计算Python实现 形状描述符分析
## 项目简介
- 功能描述:矩特征计算和形状分析
- 技术特点:基于OpenCV和numpy实现,包含丰富的可视化功能
- 适用场景:图像处理教学、计算机视觉应用等
## 环境要求
- Python版本:3.7+
- 操作系统要求:Windows/Linux/macOS
- 硬件要求:无特殊要求
## 安装说明
1. 安装Python依赖:
```
pip install -r requirements.txt
```
2. 配置说明:无需额外配置,直接运行即可
3. 验证安装:运行main.py,如果无错误提示则安装成功
## 使用说明
1. 基本用法:
- 运行main.py启动程序
- 程序会自动处理示例图像并生成分析结果
2. 高级功能:
- 支持自定义图像路径
- 可选择不同的分析参数
- 支持批量处理多个图像
3. 配置选项:
- 修改main.py中的image_path变量指定输入图像
## 项目结构
- main.py:主程序入口,包含完整的分析功能
- data/:存放测试图像文件
- output/:存放分析结果和可视化图表
- requirements.txt:Python依赖包列表
## 示例演示
程序运行后会生成各种分析结果的可视化图表。
## 技术原理
- 矩特征计算和形状分析
图像直方图分析Python实现 灰度分布统计可视化
# 图像直方图分析Python实现 灰度分布统计可视化
## 项目简介
- 功能描述:实现图像直方图分析功能,包括灰度直方图统计、彩色直方图分析、直方图均衡化等
- 技术特点:基于OpenCV和matplotlib实现,支持多种图像格式,包含丰富的可视化功能
- 适用场景:图像处理教学、图像质量评估、图像增强预处理等
## 环境要求
- Python版本:3.7+
- 操作系统要求:Windows/Linux/macOS
- 硬件要求:无特殊要求
## 安装说明
1. 安装Python依赖:
```
pip install -r requirements.txt
```
2. 配置说明:无需额外配置,直接运行即可
3. 验证安装:运行main.py,如果无错误提示则安装成功
## 使用说明
1. 基本用法:
- 运行main.py启动程序
- 程序会自动处理示例图像并生成分析结果
2. 高级功能:
- 支持自定义图像路径
- 可选择不同的直方图分析模式
- 支持批量处理多个图像
3. 配置选项:
- 修改main.py中的image_path变量指定输入图像
- 调整bins参数控制直方图精度
## 项目结构
- main.py:主程序入口,包含完整的直方图分析功能
- data/:存放测试图像文件
- output/:存放分析结果和可视化图表
- requirements.txt:Python依赖包列表
## 示例演示
程序运行后会生成以下输出:
- 原始图像显示
- 灰度直方图统计图
- RGB三通道直方图
- 直方图均衡化前后对比
- 直方图匹配结果
## 技术原理
- 直方图统计:统计
图像水印嵌入Python实现 数字水印技术可视化
# 图像水印嵌入Python实现 数字水印技术可视化
## 项目简介
- 功能描述:数字水印嵌入技术
- 技术特点:基于OpenCV和numpy实现,包含丰富的可视化功能
- 适用场景:图像处理教学、计算机视觉应用等
## 环境要求
- Python版本:3.7+
- 操作系统要求:Windows/Linux/macOS
- 硬件要求:无特殊要求
## 安装说明
1. 安装Python依赖:
```
pip install -r requirements.txt
```
2. 配置说明:无需额外配置,直接运行即可
3. 验证安装:运行main.py,如果无错误提示则安装成功
## 使用说明
1. 基本用法:
- 运行main.py启动程序
- 程序会自动处理示例图像并生成分析结果
2. 高级功能:
- 支持自定义图像路径
- 可选择不同的分析参数
- 支持批量处理多个图像
3. 配置选项:
- 修改main.py中的image_path变量指定输入图像
## 项目结构
- main.py:主程序入口,包含完整的分析功能
- data/:存放测试图像文件
- output/:存放分析结果和可视化图表
- requirements.txt:Python依赖包列表
## 示例演示
程序运行后会生成各种分析结果的可视化图表。
## 技术原理
- 数字水印嵌入技术
图像压缩算法Python代码 JPEG压缩原理演示
# 图像压缩算法Python代码 JPEG压缩原理演示
## 项目简介
- 功能描述:图像压缩算法演示
- 技术特点:基于OpenCV和numpy实现,包含丰富的可视化功能
- 适用场景:图像处理教学、计算机视觉应用等
## 环境要求
- Python版本:3.7+
- 操作系统要求:Windows/Linux/macOS
- 硬件要求:无特殊要求
## 安装说明
1. 安装Python依赖:
```
pip install -r requirements.txt
```
2. 配置说明:无需额外配置,直接运行即可
3. 验证安装:运行main.py,如果无错误提示则安装成功
## 使用说明
1. 基本用法:
- 运行main.py启动程序
- 程序会自动处理示例图像并生成分析结果
2. 高级功能:
- 支持自定义图像路径
- 可选择不同的分析参数
- 支持批量处理多个图像
3. 配置选项:
- 修改main.py中的image_path变量指定输入图像
## 项目结构
- main.py:主程序入口,包含完整的分析功能
- data/:存放测试图像文件
- output/:存放分析结果和可视化图表
- requirements.txt:Python依赖包列表
## 示例演示
程序运行后会生成各种分析结果的可视化图表。
## 技术原理
- 图像压缩算法演示
图像二值化算法Python代码 Otsu阈值分割演示
# 图像二值化算法Python代码 Otsu阈值分割演示
## 项目简介
- 功能描述:实现多种图像二值化算法,包括Otsu阈值分割、固定阈值分割、自适应阈值分割等
- 技术特点:基于OpenCV和numpy实现,支持多种阈值分割方法,包含丰富的可视化功能
- 适用场景:图像分割、目标检测预处理、OCR文字提取等
## 环境要求
- Python版本:3.7+
- 操作系统要求:Windows/Linux/macOS
- 硬件要求:无特殊要求
## 安装说明
1. 安装Python依赖:
```
pip install -r requirements.txt
```
2. 配置说明:无需额外配置,直接运行即可
3. 验证安装:运行main.py,如果无错误提示则安装成功
## 使用说明
1. 基本用法:
- 运行main.py启动程序
- 程序会自动处理示例图像并生成各种二值化结果
2. 高级功能:
- 支持自定义图像路径
- 可选择不同的阈值分割算法
- 支持参数调整和对比分析
3. 配置选项:
- 修改main.py中的image_path变量指定输入图像
- 调整threshold参数控制分割阈值
## 项目结构
- main.py:主程序入口,包含完整的二值化算法实现
- data/:存放测试图像文件
- output/:存放二值化结果和可视化图表
- requirements.txt:Python依赖包列表
## 示例演示
程序运行后会生成以下输出:
- 原始灰度图像显示
- 固定阈值分割结果
- Otsu自动阈值分割结果
- 自适应阈值分割结果
- 多种算法对比分析
## 技术原理
免疫算法IA Python实现 生物免疫系统优化算法
# 免疫算法IA Python实现 生物免疫系统优化算法
## 项目简介
本项目实现了免疫算法(Immune Algorithm, IA),这是一种模拟生物免疫系统机理的优化算法。算法通过抗体的产生、克隆选择、亲和度成熟等机制来搜索最优解,具有良好的全局搜索能力和局部收敛性能。
## 环境要求
- Python 3.7+
- numpy
- matplotlib
## 安装说明
1. 安装依赖包:
```bash
pip install numpy matplotlib
```
2. 运行程序:
```bash
python main.py
```
## 使用说明
直接运行主程序即可:
```bash
python main.py
```
程序将自动进行优化计算,并在控制台输出迭代过程,最终生成可视化结果图片。
## 项目结构
- `main.py`: 主程序文件,包含完整的IA算法实现
## 技术原理
### 算法原理
免疫算法模拟免疫系统的三大机制:
1. **克隆选择**:根据亲和度选择优秀抗体进行克隆
2. **亲和度成熟**:通过变异提高抗体的亲和度
3. **免疫记忆**:保持最优抗体进入下一代
### 核心参数
- **种群大小**:抗体的数量
- **克隆大小**:每个抗体克隆的副本数
- **变异率**:变异发生的概率
- **变异强度**:变异的幅度
- **选择率**:参与克隆选择的抗体比例
## 示例演示
运行程序后,将生成包含两个子图的图片:
- 左侧:最终抗体分布图,紫色点表示抗体的位置,红色星号表示全局最优解
- 右侧:适应度收敛曲线,显示优化过程中最优值的变化
## 技术特点
偏最小二乘回归PLSR Python代码 多变量回归建模
# 偏最小二乘回归PLSR Python代码 多变量回归建模
## 项目简介
本项目实现了偏最小二乘回归(Partial Least Squares Regression, PLSR)算法。PLSR是一种强大的多变量回归建模方法,特别适用于处理高维数据和多重共线性问题,同时考虑了自变量和因变量的相关结构。
## 核心算法原理
### 偏最小二乘回归 (PLSR)
PLSR通过提取潜在变量(成分)来建立自变量X和因变量Y之间的关系。与主成分回归(PCR)不同,PLSR在提取成分时同时考虑了X和Y的信息,使得提取的成分对预测Y更有针对性。
### 算法步骤
1. **初始化**: 对X和Y进行标准化
2. **成分提取**: 迭代提取权重向量、得分和载荷
3. **回归建模**: 在成分空间中建立回归模型
4. **系数计算**: 将成分回归系数转换回原始变量空间
## 技术特点
- **同时建模**: 在成分提取时同时考虑X和Y的信息
- **多重共线性处理**: 有效处理自变量间的相关性
- **预测导向**: 提取的成分针对预测目标优化
- **可视化分析**: 提供成分分析、系数路径和预测评估图
## 依赖包
```
numpy>=1.21.0
matplotlib>=3.5.0
```
## 使用方法
### 基本使用
```python
from plsr import PLSR, generate_multivariate_data
# 生成数据
X, y = generate_multivariate_data(n_samples=200, n_features=10)
# 创建PLSR模型
plsr = PLSR(n_components=5)
p
信号频谱分析Python实现 FFT频谱图可视化
# 信号频谱分析Python实现 FFT频谱图可视化
本项目实现了信号频谱分析,使用FFT算法进行频谱图可视化。包括各种信号类型的频谱分析、窗函数应用、功率谱密度估计等。
## 功能特性
- FFT频谱分析
- 多种信号类型分析
- 窗函数比较
- 功率谱密度估计
- 实时频谱分析
## 使用方法
1. 安装依赖:`pip install -r requirements.txt`
2. 运行主程序:`python main.py`
## 输出文件
生成的图表将保存在output目录中,包括:
- fft_spectrum.png:FFT频谱图
- window_comparison.png:窗函数比较
- signal_analysis.png:信号分析
人工鱼群算法AFSA Python实现 鱼群行为仿生优化
# 人工鱼群算法AFSA Python实现 鱼群行为仿生优化
## 项目简介
本项目实现了人工鱼群算法(Artificial Fish Swarm Algorithm, AFSA),这是一种基于鱼群觅食行为的仿生优化算法。算法模拟鱼群在水中的觅食、聚群、追尾等行为,通过群体智能寻找问题的最优解。
## 环境要求
- Python 3.7+
- numpy
- matplotlib
## 安装说明
1. 安装依赖包:
```bash
pip install numpy matplotlib
```
2. 运行程序:
```bash
python main.py
```
## 使用说明
直接运行主程序即可:
```bash
python main.py
```
程序将自动进行优化计算,并在控制台输出迭代过程,最终生成可视化结果图片。
## 项目结构
- `main.py`: 主程序文件,包含完整的AFSA算法实现
## 技术原理
### 算法原理
人工鱼群算法模拟鱼群的四种基本行为:
1. **觅食行为**:鱼在感知范围内寻找食物更丰富的区域
2. **聚群行为**:鱼倾向于向群体中心移动,但避免过度拥挤
3. **追尾行为**:鱼跟随更优的邻居向更好的区域移动
4. **随机行为**:当其他行为无法找到更好位置时,随机移动
### 核心参数
- **鱼群大小**:群体中人工鱼的数量
- **感知范围**:鱼能感知周围环境的距离
- **移动步长**:鱼每次移动的距离
- **拥挤度因子**:控制聚群行为的拥挤程度
- **尝试次数**:觅食行为中随机尝试的次数
## 示例演示
运行程序后,将生成包含两个子图的图片:
-
Smith图绘制Python代码 射频电路阻抗匹配可视化
# Smith图绘制Python代码 射频电路阻抗匹配可视化
本项目实现了Smith图的绘制,用于射频电路中的阻抗匹配可视化。Smith图是一种用于分析和设计射频电路的图形工具,能够直观地显示阻抗、导纳和反射系数的变换关系。
## 功能特性
- 绘制标准Smith图网格
- 计算和绘制阻抗点
- 阻抗匹配计算
- 可视化反射系数
- 保存图表为图片文件
## 使用方法
1. 安装依赖:`pip install -r requirements.txt`
2. 运行主程序:`python main.py`
## 输出文件
生成的图表将保存在output目录中,包括:
- smith_chart.png:Smith图可视化
- impedance_matching.png:阻抗匹配示例
Nyquist图Python实现 控制系统频率响应图表
# Nyquist图Python实现 控制系统频率响应图表
本项目实现了Nyquist图的绘制,用于控制系统频率响应的可视化。Nyquist图是控制理论中的重要工具,用于分析系统的稳定性、增益裕度和相位裕度。
## 功能特性
- 绘制Nyquist图
- 计算频率响应
- 稳定性分析
- 增益和相位裕度计算
- 多种系统示例
## 使用方法
1. 安装依赖:`pip install -r requirements.txt`
2. 运行主程序:`python main.py`
## 输出文件
生成的图表将保存在output目录中,包括:
- nyquist_plot.png:Nyquist图
- stability_analysis.png:稳定性分析
- multiple_systems.png:多系统比较
Bode图绘制Python代码 幅频相频特性曲线
# Bode图绘制Python代码 幅频相频特性曲线
本项目实现了Bode图的绘制,用于控制系统幅频和相频特性的可视化。Bode图是控制理论中的重要工具,用于分析系统的频率响应特性。
## 功能特性
- 绘制幅频特性曲线
- 绘制相频特性曲线
- 计算增益和相位裕度
- 多种系统示例
- 参数变化分析
## 使用方法
1. 安装依赖:`pip install -r requirements.txt`
2. 运行主程序:`python main.py`
## 输出文件
生成的图表将保存在output目录中,包括:
- bode_plot.png:Bode图
- margins_analysis.png:裕度分析
- system_comparison.png:系统比较
随机梯度下降SGD Python实现 大规模数据优化算法
# 随机梯度下降SGD Python实现 大规模数据优化算法
## 项目简介
本项目实现了随机梯度下降(Stochastic Gradient Descent, SGD)优化算法,特别适用于大规模数据优化。SGD通过随机选择小批量数据进行梯度计算,大大提高了计算效率,是深度学习和大规模机器学习的核心优化算法。
## 核心算法原理
### 随机梯度下降 (SGD)
SGD的基本思想是在每一步迭代中,不是使用全部训练数据计算梯度,而是随机选择一个或一小批数据点来近似计算梯度。这种方法大大降低了计算成本,特别适合处理大规模数据集。
### 算法流程
1. **初始化**: 随机初始化模型参数
2. **迭代优化**: 对每个小批量数据计算梯度并更新参数
3. **收敛检查**: 监控损失函数变化判断是否收敛
4. **学习率调整**: 可选择使用学习率衰减策略
## 技术特点
- **大规模优化**: 适合处理百万级甚至更大规模的数据集
- **在线学习**: 支持增量学习,可以实时更新模型
- **并行化**: 易于在分布式系统中实现并行计算
- **正则化**: 支持L1/L2正则化防止过拟合
- **自适应学习率**: 支持多种学习率调度策略
## 依赖包
```
numpy>=1.21.0
matplotlib>=3.5.0
```
## 使用方法
### 基本使用
```python
from sgd import SGDRegressor, generate_large_dataset
# 生成大规模数据
X, y = generate_large_dataset(n_samples=10000, n_features=20)
# 创建SGD回归器
sgd
长短时记忆网络LSTM Python实现 序列数据建模
# 长短时记忆网络LSTM Python实现 序列数据建模
## 项目简介
本项目实现了基于长短时记忆网络(LSTM)的时序数据建模和预测。通过构建多层LSTM网络,对复杂的序列数据进行有效的学习和预测分析。项目包含完整的数据预处理、模型训练、预测和可视化功能。
## 环境要求
- Python 3.7+
- TensorFlow 2.15.0
- NumPy 1.24.3
- Matplotlib 3.7.2
- Pandas 2.0.3
- Scikit-learn 1.3.0
- Statsmodels 0.14.0
## 安装说明
1. 克隆或下载项目文件
2. 安装依赖包:
```bash
pip install -r requirements.txt
```
## 使用说明
1. 运行主程序:
```bash
python main.py
```
2. 程序将自动:
- 生成合成时间序列数据
- 构建LSTM模型
- 训练模型
- 进行预测
- 生成可视化结果
## 项目结构
- `main.py`: 主程序文件,包含完整的LSTM实现
- `requirements.txt`: 项目依赖包列表
- `lstm_training_history.png`: 训练历史可视化
- `lstm_predictions.png`: 预测结果可视化
- `lstm_error_analysis.png`: 误差分析可视化
- `lstm_sequence_analysis.png`: 序列模式分析
## 技术原理
### LSTM基本原理
长短时记忆网络是一种特殊的循环神经网络,通过引入输入门、遗忘门和输出
逻辑回归算法Python实现 二分类和多分类模型
# 逻辑回归算法Python实现 二分类和多分类模型
## 项目简介
本项目实现了逻辑回归(Logistic Regression)算法,这是一种广泛使用的线性分类算法。通过Sigmoid函数将线性回归的结果映射到(0,1)区间,实现二分类和多分类任务。支持L1/L2正则化,采用梯度下降优化。
## 环境要求
- Python 3.7+
- numpy
- matplotlib
## 安装说明
1. 安装依赖包:
```bash
pip install numpy matplotlib
```
2. 运行程序:
```bash
python main.py
```
## 使用说明
直接运行主程序即可:
```bash
python main.py
```
程序将自动演示二分类和多分类任务,输出训练过程和准确率,最终生成可视化图片。
## 项目结构
- `main.py`: 主程序文件,包含完整的逻辑回归实现和演示
## 技术原理
### 算法原理
逻辑回归基于Sigmoid函数:
σ(z) = 1 / (1 + e^(-z))
其中 z = w·x + b
损失函数为二元交叉熵:
L = -[y·log(σ(z)) + (1-y)·log(1-σ(z))]
### 优化方法
- **梯度下降**:使用批量梯度下降更新参数
- **正则化**:支持L1和L2正则化防止过拟合
- **收敛判断**:基于损失变化判断收敛
### 多分类策略
采用一对多(One-vs-Rest)策略:
- 为每个类别训练一个二分类器
- 预测时选择概率最高的类别
### 核心参数
- **learning_rate**:
细菌觅食优化算法BFO Python代码 细菌群体智能算法
# 细菌觅食优化算法BFO Python代码 细菌群体智能算法
## 项目简介
本项目实现了细菌觅食优化算法(Bacterial Foraging Optimization Algorithm, BFO),这是一种模拟细菌在营养梯度中觅食行为的仿生优化算法。算法通过细菌的趋化、繁殖和消除-分散三种行为来搜索最优解。
## 环境要求
- Python 3.7+
- numpy
- matplotlib
## 安装说明
1. 安装依赖包:
```bash
pip install numpy matplotlib
```
2. 运行程序:
```bash
python main.py
```
## 使用说明
直接运行主程序即可:
```bash
python main.py
```
程序将自动进行优化计算,并在控制台输出迭代过程,最终生成可视化结果图片。
## 项目结构
- `main.py`: 主程序文件,包含完整的BFO算法实现
## 技术原理
### 算法原理
细菌觅食优化算法模拟细菌的三种主要行为:
1. **趋化行为**:细菌通过翻滚和游动在营养梯度中寻找食物
2. **繁殖行为**:健康度好的细菌分裂产生后代
3. **消除-分散行为**:部分细菌被随机重新分布到搜索空间
### 核心参数
- **种群大小**:细菌的数量
- **趋化步数**:每代中每个细菌的趋化操作次数
- **游动长度**:细菌沿一个方向连续游动的最大步数
- **移动步长**:细菌每次移动的距离
- **繁殖比例**:参与繁殖的细菌比例
- **分散概率**:细菌被重新分布的概率
## 示例演示
运行程序后,将生成包含两个子图的图片:
-
文化算法CA Python代码 文化进化群体智能优化
# 文化算法CA Python代码 文化进化群体智能优化
## 项目简介
本项目实现了文化算法(Cultural Algorithm, CA),这是一种双层进化算法,包含种群空间和信念空间。信念空间存储和更新文化知识,指导种群空间的进化过程,具有良好的全局搜索能力和文化学习机制。
## 环境要求
- Python 3.7+
- numpy
- matplotlib
## 安装说明
1. 安装依赖包:
```bash
pip install numpy matplotlib
```
2. 运行程序:
```bash
python main.py
```
## 使用说明
直接运行主程序即可:
```bash
python main.py
```
程序将自动进行优化计算,并在控制台输出迭代过程,最终生成可视化结果图片。
## 项目结构
- `main.py`: 主程序文件,包含完整的CA算法实现
## 技术原理
### 算法原理
文化算法采用双层结构:
1. **种群空间**:执行遗传操作(选择、交叉、变异)
2. **信念空间**:存储文化知识(规范、情境、拓扑知识),影响种群进化
### 信念空间知识
- **规范知识**:定义可接受解的范围
- **情境知识**:存储当前最优解
- **拓扑知识**:维护优秀解的集合
### 核心参数
- **种群大小**:个体的数量
- **变异强度**:变异操作的幅度
- **接受率**:个体进入信念空间的概率
## 示例演示
运行程序后,将生成包含两个子图的图片:
- 左侧:最终种群分布图,橙色点表示个体的位置,红色星号表示情境知识
- 右侧:适应度收敛曲线,显示优化过
循环神经网络RNN Python代码 时间序列预测网络
# 循环神经网络RNN Python代码 时间序列预测网络
## 项目简介
本项目实现了基于循环神经网络(RNN)的时序数据预测模型。通过构建多层RNN网络,对时间序列数据进行有效的预测分析。项目包含完整的数据预处理、模型训练、预测和可视化功能。
## 环境要求
- Python 3.7+
- TensorFlow 2.15.0
- NumPy 1.24.3
- Matplotlib 3.7.2
- Pandas 2.0.3
- Scikit-learn 1.3.0
## 安装说明
1. 克隆或下载项目文件
2. 安装依赖包:
```bash
pip install -r requirements.txt
```
## 使用说明
1. 运行主程序:
```bash
python main.py
```
2. 程序将自动:
- 生成合成时间序列数据
- 构建RNN模型
- 训练模型
- 进行预测
- 生成可视化结果
## 项目结构
- `main.py`: 主程序文件,包含完整的RNN实现
- `requirements.txt`: 项目依赖包列表
- `rnn_training_history.png`: 训练历史可视化
- `rnn_predictions.png`: 预测结果可视化
- `rnn_error_analysis.png`: 误差分析可视化
## 技术原理
### RNN基本原理
循环神经网络是一种专门处理序列数据的神经网络,通过维护内部状态来捕捉时间依赖关系。
### 模型架构
- 输入层:时间序列数据
- RNN层:多个SimpleRNN层,包含Dropout正则化
- 输出层:单