A - 迷宫问题 POJ - 3984

定义一个二维数组: 
int maze[5][5] = {

	0, 1, 0, 0, 0,

	0, 1, 0, 1, 0,

	0, 0, 0, 0, 0,

	0, 1, 1, 1, 0,

	0, 0, 0, 1, 0,

};

它表示一个迷宫,其中的1表示墙壁,0表示可以走的路,只能横着走或竖着走,不能斜着走,要求编程序找出从左上角到右下角的最短路线。
Input
一个5 × 5的二维数组,表示一个迷宫。数据保证有唯一解。
Output
左上角到右下角的最短路径,格式如样例所示。
Sample Input
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0
Sample Output
(0, 0)
(1, 0)
(2, 0)
(2, 1)
(2, 2)
(2, 3)
(2, 4)
(3, 4)

(4, 4)

题解报告:一道关于bfs的题目,不难,但是在输出方面卡了好久,一直不知道如何输出,裹了半天才弄明白,利用一个数组储存来自四个方向的路径,然后通过递归输出即可!

#include<algorithm>
#include<queue>
#include<cstdio>

using namespace std;

int num[7][7];
int sign[6][6];


struct node{
	int x,y;
};

node move[4]={{1,0},{-1,0},{0,-1},{0,1}};

void print(int x,int y)
{
	if(sign[x][y]==-1)
	{
		cout<<"("<<x<<", "<<y<<")"<<endl;
		return;
	}
	print(x-move[sign[x][y]-1].x,y-move[sign[x][y]-1].y);
	cout<<"("<<x<<", "<<y<<")"<<endl;	
} 

void bfs(node begin)
{
	queue<node>w;
	node begin1,end1;
	
	w.push(begin);
	sign[begin.x][begin.y]=-1;
	
	while(!w.empty())
	{
	    begin1=w.front();
	    w.pop();
	    
		if(begin1.x==4&&begin1.y==4)
	            break;
	
	    for(int i=0;i<4;i++)
	    {

		    end1.x=begin1.x+move[i].x;
		    end1.y=begin1.y+move[i].y;
		    
	        if(end1.x>=0&&end1.y>=0&&end1.x<5&&end1.y<5&&num[end1.x][end1.y]!=1&&!sign[end1.x][end1.y])
	        {
			    w.push(end1);                
		        sign[end1.x][end1.y]=i+1;       //1 2 3 4上下左右过来的点 
	        }
	    }
	}
	print(4,4);
}



int main()
{
	node begin,end;
	for(int i=0;i<5;i++)
	{
		for(int j=0;j<5;j++)
		    cin>>num[i][j];
	}
	begin.x=0,begin.y=0;
	bfs(begin);
	return 0;
}


根据提供的引用内容,可以得知这是一道关于迷宫问题的题目,需要使用Java语言进行编写。具体来说,这道题目需要实现一个迷宫的搜索算法,找到从起点到终点的最短路径。可以使用广度优先搜索或者深度优先搜索算法来解决这个问题。 下面是一个使用广度优先搜索算法的Java代码示例: ```java import java.util.*; public class Main { static int[][] maze = new int[5][5]; // 迷宫地图 static int[][] dir = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}}; // 方向数组 static boolean[][] vis = new boolean[5][5]; // 标记数组 static int[][] pre = new int[5][5]; // 记录路径 public static void main(String[] args) { Scanner sc = new Scanner(System.in); for (int i = 0; i < 5; i++) { for (int j = 0; j < 5; j++) { maze[i][j] = sc.nextInt(); } } bfs(0, 0); Stack<Integer> stack = new Stack<>(); int x = 4, y = 4; while (x != 0 || y != 0) { stack.push(x * 5 + y); int t = pre[x][y]; x = t / 5; y = t % 5; } stack.push(0); while (!stack.empty()) { System.out.print(stack.pop() + " "); } } static void bfs(int x, int y) { Queue<Integer> qx = new LinkedList<>(); Queue<Integer> qy = new LinkedList<>(); qx.offer(x); qy.offer(y); vis[x][y] = true; while (!qx.isEmpty()) { int tx = qx.poll(); int ty = qy.poll(); if (tx == 4 && ty == 4) { return; } for (int i = 0; i < 4; i++) { int nx = tx + dir[i][0]; int ny = ty + dir[i][1]; if (nx >= 0 && nx < 5 && ny >= 0 && ny < 5 && maze[nx][ny] == 0 && !vis[nx][ny]) { vis[nx][ny] = true; pre[nx][ny] = tx * 5 + ty; qx.offer(nx); qy.offer(ny); } } } } } ``` 该代码使用了广度优先搜索算法,首先读入迷宫地图,然后从起点开始进行搜索,直到找到终点为止。在搜索的过程中,使用标记数组记录已经访问过的位置,使用路径数组记录路径。最后,使用栈来输出路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值