题目:http://acm.hdu.edu.cn/showproblem.php?pid=2451
题意: 问在所有小于n的i中,有多少个i计算表达式(i) + (i+1) + (i+2), i>=0的时候不会产生任何进位。
题解:对于个位,当个位为0,1,2时不会产生进位;对于非个位,为0,1,2,3时不会产生进位(题意表明没有低位向高位的进位)。因此我们可以根据n 的每位数字进行推算,比如24980,我们先算小于20000的符合条件的个数,再算20000~24000的,以此类推。
测试数据:
输入:
24980
25000
11000
12521
输出:
576
576
240
336
代码:
#include<cstdio>
#include<cstring>
using namespace std;
#define LL __int64
using namespace std;
LL numx[15];
char num[15];
int len;
LL dfs(int x)
{
if(x==len-1)
{
if(num[x]>='3') return 3;
else return (int)(num[x]-'0');
}
int idx=(num[x]>'3'?4:(int)(num[x]-'0'));
LL a=numx[len-x-2]*idx,b=dfs(x+1);
if(idx>3) return a;
else return a+b;
}
int main()
{
numx[0]=3;
for(int i=1;i<=10;++i) numx[i]=numx[i-1]*4;
for(;~scanf("%s",num);)
{
LL summ=0;
len=strlen(num);
if(len==1)
{
if(num[0]>='3') printf("3\n");
else printf("%d\n",(int)(num[0]-'0'));
continue;
}
printf("%I64d\n",dfs(0));
}
return 0;
}
来源: http://blog.csdn.net/acm_ted/article/details/8058344