转载请注明出处,谢谢 http://blog.csdn.net/ACM_cxlove?viewmode=contents by---cxlove
第一场TC没有爆0,可是 还是短路了。哎,TC的题目太长,理解有障碍。
250pt:就是有3个帽子,其中一个下面有一个球。每次会随机交换相邻的两个帽子,问经过n次交换(这里的n是交换的两个帽子中包括球的次数),小球最有可能在哪个位置。
因为如果在0,2号位,交换一次只可能在1号位,而如果在1号位,交换一次,0,2号位等概率,但是取小的,就是0号位。这样根据初始位置和奇偶性就可以判断。
class BallAndHats{
public:
int getHat(string hats, int numSwaps){
int pos;
for(int i=0;i<3;i++)
if(hats[i]=='o')
pos=i;
if(numSwaps==0)
return pos;
if(pos==0){
if(numSwaps&1)
return 1;
else
return 0;
}
if(pos==1){
if(numSwaps&1)
return 0;
else
return 1;
}
else{
if(numSwaps&1)
return 1;
else
return 0;
}
}
};
500PT:看题用掉了大量的时间,哎。两个圆锥能组成一个XXX的条件是,下面的圆锥必须露出一部分,上面的圆锥顶端要比下面的高。
前一个条件就是上面的圆锥半径要比下面的小。
后一个条件就是斜面的斜率上面一个要大。
之后就是赤裸裸的二分图匹配,竟然写挂了。
class PointyWizardHats{
public:
int mat[51][51],n,m;
bool flag[51];
int pre[51];
bool dfs(int i){
for(int j=0;j<m;j++)
if(!flag[j]&&mat[i][j]){
flag[j]=true;
if(pre[j]==-1||dfs(pre[j])){
pre[j]=i;
return true;
}
}
return false;
}
int getNumHats(vector <int> topHeight, vector <int> topRadius, vector <int> bottomHeight, vector <int> bottomRadius){
n=topHeight.size();
m=bottomHeight.size();
memset(mat,0,sizeof(mat));
for(int i=0;i<n;i++)
for(int j=0;j<m;j++)
if(topRadius[i]<bottomRadius[j]&&(double)topHeight[i]/topRadius[i]>(double)bottomHeight[j]/bottomRadius[j])
mat[i][j]=1;
int ans=0;
memset(pre,-1,sizeof(pre));
for(int i=0;i<n;i++){
memset(flag,false,sizeof(flag));
if(dfs(i))
ans++;
}
return ans;
}
};
1000PT:当时看了题目完全没有想法啊。
是一个状态压缩DP。
class OrderOfTheHats{
public:
int minChanged(vector <string> spellChart){
int n=spellChart.size();
dp[0]=sum[0]=0;
for(int i=1;i<(1<<n);i++){
sum[i]=sum[i>>1]+(i&1);
dp[i]=inf;
}
int a[20]; //a[i]表示从i出发能直接到达的点的状态
memset(a,0,sizeof(a));
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
if(spellChart[i][j]=='Y')
a[i]|=(1<<j);
for(int i=0;i<(1<<n);i++)
for(int j=0;j<n;j++)
if((i&(1<<j))==0)
dp[i|(1<<j)]=min(dp[i|(1<<j)],dp[i]+sum[a[j]]-sum[i&a[j]]); //表示遍历了在i的基础上遍历了j点,把j的限制但是不在i中的全部删掉
return dp[(1<<n)-1];
}
};