转载请注明出处,谢谢http://blog.csdn.net/acm_cxlove/article/details/7854526 by---cxlove
题目:一个只含0,1的矩阵
1.X12+X13+...X1n=1
2.X1n+X2n+...Xn-1n=1
3.for each i (1<i<n), satisfies ∑Xki (1<=k<=n)=∑Xij (1<=j<=n).
另外一个矩阵,两个矩阵相乘最小
http://acm.hdu.edu.cn/showproblem.php?pid=4370
显然,题目给的是一个0/1规划模型。
解题的关键在于如何看出这个模型的本质。
3个条件明显在刻画未知数之间的关系,从图论的角度思考问题,容易得到下面3个结论:
1.X12+X13+...X1n=1 于是1号节点的出度为1
2..X1n+X2n+...Xn-1n=1 于是n号节点的入度为1
3.∑Xki =∑Xij 于是2~n-1号节点的入度必须等于出度
于是3个条件等价于一条从1号节点到n号节点的路径,故Xij=1表示需要经过边(i,j),代价为Cij。Xij=0表示不经过边(i,j)。注意到Cij非负且题目要求总代价最小,因此最优答案的路径一定可以对应一条简单路径。
最终,我们直接读入边权的邻接矩阵,跑一次1到n的最短路即可,记最短路为path。
以上情况设为A
非常非常非常非常非常非常非常非常抱歉,简单路径只是充分条件,但不必要。(对造成困扰的队伍深表歉意)
漏了如下的情况B:
从1出发,走一个环(至少经过1个点,即不能是自环),回到1;从n出发,走一个环(同理),回到n。
容易验证,这是符合题目条件的。且A || B为该题要求的充要条件。
由于边权非负,于是两个环对应着两个简单环。
因此我们可以从1出发,找一个最小花费环,记代价为c1,再从n出发,找一个最小花费环,记代价为c2。(只需在最短路算法更新权值时多加一条记录即可:if(i==S) cir=min(cir,dis[u]+g[u][i]))
故最终答案为min(path,c1+c2)
#include<iostream>
#include<cstdio>
#include<map>
#include<cstring>
#include<cmath>
#include<vector>
#include<algorithm>
#include<set>
#include<queue>
#define inf 1<<27
#define N 105
#define Min(a,b) ((a)<(b)?(a):(b))
#define Max(a,b) ((a)>(b)?(a):(b))
#define pb(a) push_back(a)
#define LL long long
using namespace std;
int n,path[305][305];
int dist[305],vis[305];
void Spfa(int s){
queue<int>que;
memset(vis,0,sizeof(vis));
for(int i=0;i<n;i++){
if(i==s) dist[i]=inf;
else{
dist[i]=path[s][i];
que.push(i);
vis[i]=1;
}
}
while(!que.empty()){
int u=que.front();
que.pop();
vis[u]=0;
for(int i=0;i<n;i++){
if(dist[i]>dist[u]+path[u][i]){
dist[i]=dist[u]+path[u][i];
if(!vis[i]){
vis[i]=1;
que.push(i);
}
}
}
}
}
int main(){
while(scanf("%d",&n)!=EOF){
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
scanf("%d",&path[i][j]);
int ans,c1,c2;
Spfa(0);
ans=dist[n-1];
c1=dist[0];
Spfa(n-1);
c2=dist[n-1];
printf("%d\n",min(ans,c1+c2));
}
return 0;
}