Aoj 92 Pendant (DP+矩阵)

转载请注明出处,谢谢http://blog.csdn.net/acm_cxlove/article/details/7854526       by---cxlove 

题目:有K种颜色的物品,组成长度为1-N的串,问有多少种,而且每种颜色都要出现

http://icpc.ahu.edu.cn/OJ/Problem.aspx?id=92 

原以为是组合计数问题,其实DP就好了

dp[i][j]表示利用j种颜色,长度 为i的串有多少种

dp[i][j]=dp[i-1][j]*j+dp[i-1][j-1]*(k-j+1)

但是长度 N非常大,N*K的时间和空间都无法接受,但是这类的递推问题肯定能用矩阵解决

我们要求的是sigma(dp[i][k]),其中sum[j]=sigma(dp[i][k])   j=>i>=1

对于一个行向量{dp[i-1][1],dp[i-1][2],dp[i-1][3]……dp[i-1][k],sum[i-1]}

构造矩阵mat

| 1   k-1

|      2     k-2

|             3     k-3

|                      4

|                                k    1

|                                      1

矩阵快速幂解决

#include<iostream>
#include<cstdio>
#include<map>
#include<cstring>
#include<cmath>
#include<vector>
#include<algorithm>
#include<set>
#include<string>
#include<queue>
#define inf 1<<28
#define M 6000005
#define N 35
#define maxn 300005
#define Min(a,b) ((a)<(b)?(a):(b))
#define Max(a,b) ((a)>(b)?(a):(b))
#define pb(a) push_back(a)
#define mem(a,b) memset(a,b,sizeof(a))
#define LL long long
#define MOD 1234567891
#define lson step<<1
#define rson step<<1|1
#define eps 1e-8
#define zero(a) (fabs(a)<eps)
using namespace std;
struct Matrix{
    LL m[N][N];
}init,unit;
Matrix Mult(Matrix m1,Matrix m2,int n=2){
    Matrix ans;
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++){
            ans.m[i][j]=0;
            for(int k=0;k<n;k++)
                ans.m[i][j]=((LL)ans.m[i][j]+m1.m[i][k]*m2.m[k][j])%MOD;
        }
    return ans;
}
Matrix Pow(Matrix m1,int b,int n=2){
    Matrix ans;
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
            ans.m[i][j]=(i==j);
    while(b){
        if(b&1)
            ans=Mult(ans,m1,n);
        m1=Mult(m1,m1,n);
        b>>=1;
    }
    return ans;
}
void debug(Matrix m1,int n=2){
    for(int i=0;i<n;i++){
        for(int j=0;j<n;j++)
            printf("%d ",m1.m[i][j]);
        printf("\n");
    }
}
int t,n,k;
void Init()
{
    mem(init.m,0);
    for(int i=0;i<k;i++)
    {
        if(i==0) init.m[0][0]=1;
        else{
            init.m[i-1][i]=k-i;
            init.m[i][i]=i+1;
        }
    }
    init.m[k][k]=1;init.m[k-1][k]=1;
}
int main()
{
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&k);
        Init();
        unit=Pow(init,n-1,k+1);
        printf("%I64d\n",k*(unit.m[0][k-1]+unit.m[0][k])%MOD);
  //      debug(init,k+1);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值