转载请注明出处,谢谢http://blog.csdn.net/acm_cxlove/article/details/7854526 by---cxlove
题目:有K种颜色的物品,组成长度为1-N的串,问有多少种,而且每种颜色都要出现
http://icpc.ahu.edu.cn/OJ/Problem.aspx?id=92
原以为是组合计数问题,其实DP就好了
dp[i][j]表示利用j种颜色,长度 为i的串有多少种
dp[i][j]=dp[i-1][j]*j+dp[i-1][j-1]*(k-j+1)
但是长度 N非常大,N*K的时间和空间都无法接受,但是这类的递推问题肯定能用矩阵解决
我们要求的是sigma(dp[i][k]),其中sum[j]=sigma(dp[i][k]) j=>i>=1
对于一个行向量{dp[i-1][1],dp[i-1][2],dp[i-1][3]……dp[i-1][k],sum[i-1]}
构造矩阵mat
| 1 k-1
| 2 k-2
| 3 k-3
| 4
| k 1
| 1
矩阵快速幂解决
#include<iostream>
#include<cstdio>
#include<map>
#include<cstring>
#include<cmath>
#include<vector>
#include<algorithm>
#include<set>
#include<string>
#include<queue>
#define inf 1<<28
#define M 6000005
#define N 35
#define maxn 300005
#define Min(a,b) ((a)<(b)?(a):(b))
#define Max(a,b) ((a)>(b)?(a):(b))
#define pb(a) push_back(a)
#define mem(a,b) memset(a,b,sizeof(a))
#define LL long long
#define MOD 1234567891
#define lson step<<1
#define rson step<<1|1
#define eps 1e-8
#define zero(a) (fabs(a)<eps)
using namespace std;
struct Matrix{
LL m[N][N];
}init,unit;
Matrix Mult(Matrix m1,Matrix m2,int n=2){
Matrix ans;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++){
ans.m[i][j]=0;
for(int k=0;k<n;k++)
ans.m[i][j]=((LL)ans.m[i][j]+m1.m[i][k]*m2.m[k][j])%MOD;
}
return ans;
}
Matrix Pow(Matrix m1,int b,int n=2){
Matrix ans;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
ans.m[i][j]=(i==j);
while(b){
if(b&1)
ans=Mult(ans,m1,n);
m1=Mult(m1,m1,n);
b>>=1;
}
return ans;
}
void debug(Matrix m1,int n=2){
for(int i=0;i<n;i++){
for(int j=0;j<n;j++)
printf("%d ",m1.m[i][j]);
printf("\n");
}
}
int t,n,k;
void Init()
{
mem(init.m,0);
for(int i=0;i<k;i++)
{
if(i==0) init.m[0][0]=1;
else{
init.m[i-1][i]=k-i;
init.m[i][i]=i+1;
}
}
init.m[k][k]=1;init.m[k-1][k]=1;
}
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&k);
Init();
unit=Pow(init,n-1,k+1);
printf("%I64d\n",k*(unit.m[0][k-1]+unit.m[0][k])%MOD);
// debug(init,k+1);
}
return 0;
}