UVA 11610 Reverse Prime(数论+树状数组+二分)

转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove

给出一个reverse_prime,自身是一个7位数,反转后是一个<=1e6的素数。
首先求出所有的这种数
两种操作
q k :表示删除数字K
首先预处理出所有的reverse_prime,我的做法是先打出<=1e6的所有素数
然后将其反转,可以看出所有素数都是6位数,但是题目要求是7位数,可见原数的最低位都为0,可以不考虑这个0,之后的效率也许会快点。
将所有素数反转,然后凑成6位数。再算出每个数的素因子个数,不要忘记之前少算的末尾的0,也就是因子2和因子5.
对于统计部分,建立两个树状数组,第一 个表示区间内还有多少个数,第二个表示区间内因子个数和。
对于D操作, 直接用map记录某个reverse_prime的下标,然后更新两个树状数组
对于q操作,二分位置,然后用第一个树状数组,可以知道区间内有多少个数。最后用第二个树状数组求和。
#include<iostream>  
#include<cstdio>  
#include<map>  
#include<cstring>  
#include<cmath>  
#include<vector>  
#include<algorithm>  
#include<set>  
#include<string>  
#include<queue>  
#define inf 1600005  
#define M 40  
#define N 1000000 
#define maxn 300005  
#define eps 1e-12
#define zero(a) fabs(a)<eps  
#define Min(a,b) ((a)<(b)?(a):(b))  
#define Max(a,b) ((a)>(b)?(a):(b))  
#define pb(a) push_back(a)  
#define mp(a,b) make_pair(a,b)  
#define mem(a,b) memset(a,b,sizeof(a))  
#define LL unsigned long long  
#define MOD 1000000007
#define lson step<<1
#define rson step<<1|1
#define sqr(a) ((a)*(a))  
#define Key_value ch[ch[root][1]][0]  
#define test puts("OK");  
#define pi acos(-1.0)
#define lowbit(x) ((-(x))&(x))
#pragma comment(linker, "/STACK:1024000000,1024000000")  
using namespace std;
int flag[N]={0},prime[N],cnt=0;
int fac[N],a[N],tot=0,p[N];
LL s1[N],s2[N];
map<int,int>m;
int slove(int num){
    int len=0,ret=0,bit[20];
    while(num){
        bit[len++]=num%10;
        num/=10;
    }
    for(int i=0;i<len;i++)
        ret=ret*10+bit[i];
    while(ret<100000) ret*=10;
    return ret;
}
void Init(){
    for(int i=2;i<N;i++){
        if(flag[i]) continue;
        prime[++cnt]=i;
        for(int j=2;j*i<N;j++)
            flag[i*j]=1;
    }
    for(int i=1;i<=cnt;i++){
        a[i]=slove(prime[i]);
    }
    sort(a+1,a+1+cnt);
    for(int i=1;i<=cnt;i++){
        m[a[i]]=i;
    }
    for(int i=1;i<=cnt;i++){
        fac[i]=2;    //去掉了最后一个0,肯定包括2,5两个因子
        int tmp=a[i];
        for(int j=1;j<=cnt&&prime[j]*prime[j]<=tmp;j++)
            while(tmp%prime[j]==0){
                tmp/=prime[j];
                fac[i]++;
            }
        if(tmp>1) fac[i]++;
    }
}
void Update(LL *s,int x,int val){
    for(int i=x;i<=cnt;i+=lowbit(i))
        s[i]+=val;
}
LL sum(LL *s,int x){
    LL ret=0;
    for(int i=x;i>0;i-=lowbit(i))
        ret+=s[i];
    return ret;
}
int main(){
    //freopen("in.txt","r",stdin);
    Init();
    char str[5];int k;
    mem(s1,0);mem(s2,0);
    for(int i=1;i<=cnt;i++) s1[i]=lowbit(i);
    for(int i=1;i<=cnt;i++) Update(s2,i,fac[i]);
    while(scanf("%s%d",str,&k)!=EOF){
        if(str[0]=='d'){
            int pos=m[k/10];
            Update(s1,pos,-1);
            Update(s2,pos,-fac[pos]);
        }
        else{
            k++;
            int low=1,high=cnt,mid;
            while(low<=high){
                mid=(low+high)>>1;
                LL tmp=sum(s1,mid);
                if(tmp==k) break;
                if(tmp<k) low=mid+1;
                else high=mid-1;
            }
            printf("%lld\n",sum(s2,mid));
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值