转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents by---cxlove
题目:给出a,b (a>=b),给出k
每一步可以选择num-=1,也可以从2--k中选出一个数i进行操作num-=num%i
问最少多少步把a变成b
重点在于第二种选择,
我们可以发现lcm(2……k)的倍数是必然要经过的。
因为%lcm的部分,都可以通过选择一个数转换得到,但是终究要到lcm的倍数处。
如果a,b在一个区间的话,直接DP
如果不在一个区间,则说明 中间有许多 相同的区间,然后再把两端DP
#include<iostream>
#include<cstdio>
#include<map>
#include<cstring>
#include<cmath>
#include<vector>
#include<algorithm>
#include<set>
#include<string>
#include<queue>
#define inf 1600005
#define M 40
#define N 200000
#define maxn 300005
#define eps 1e-12
#define zero(a) fabs(a)<eps
#define Min(a,b) ((a)<(b)?(a):(b))
#define Max(a,b) ((a)>(b)?(a):(b))
#define pb(a) push_back(a)
#define mp(a,b) make_pair(a,b)
#define mem(a,b) memset(a,b,sizeof(a))
#define LL unsigned long long
#define MOD 1000000007
#define lson step<<1
#define rson step<<1|1
#define sqr(a) ((a)*(a))
#define Key_value ch[ch[root][1]][0]
#define test puts("OK");
#define pi acos(-1.0)
#define lowbit(x) ((-(x))&(x))
#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
int gcd(int a,int b){
return b==0?a:gcd(b,a%b);
}
int LCM(int a,int b){
return a/gcd(a,b)*b;
}
LL a,b;
int k;
LL lcm=1,ans;
int dp[1<<20];
int slove(int u,int v){
for(int i=0;i<=lcm;i++) dp[i]=inf;
dp[u]=0;
for(int i=u;i>v;i--)
{
dp[i-1]=min(dp[i-1],dp[i]+1);
for(int j=2;j<=k;j++)
if((i-i%j)>=v)
dp[i-i%j]=min(dp[i-i%j],dp[i]+1);
}
return dp[v];
}
int main(){
//freopen("in.txt","r",stdin);
cin>>a>>b>>k;
for(int i=2;i<=k;i++) lcm=LCM(lcm,i);
if(a/lcm==b/lcm){
ans=slove(a%lcm,b%lcm);
}
else{
ans=slove(a%lcm,0)+(a/lcm-b/lcm-1)*slove(lcm,0)+slove(lcm,b%lcm);
}
cout<<ans<<endl;
return 0;
}