问题 F: 巴什博弈?
时间限制: 1 Sec 内存限制: 30 MB提交: 247 解决: 45
[ 提交][ 状态][ 讨论版]
题目描述
有n个石子,有两人轮流从中取石子,最少a个最多b个,谁没得取(即当轮到他取是已经没有石子可以取了,也就是说此时石子数量小于a)谁赢,现在,LLM先取,问你LLM能赢吗
输入
每个测试样例少于100000组测试数据
每组测试样例第一行三个整数n,a,b
1<=a<=b,n<=100000000
输出
如果LLM能赢,输出YES,否则输出NO
样例输入
1 1 12 1 2
样例输出
NOYES
当我没得取时输,也就是说当剩下大于等于a个石子少于2*a个石子的时候我必然输,其他必败态就是这个数量再加上(a+b)*k k为常数
举例而言:
6 2 2
双方取一轮,剩下2个,该我取那自然我就输了
如果是
8 2 2
我可以先取二个把问题转化为:6 2 2的情况下对手先取,那自然他输
这么说吧:我们可以把给出的n分个类:
N%(a+b)<a
N%(a+b)<2*a
N%(a+b)>=2*a
对于第二种情况,我是必败的这个很好推
对于第一种情况,我可以通过取一个b变成:对面先取,状态是N%(a+b)<2*a
对于第三种情况,我可以取个大于等于a的数量变成:对面先取,状态是N%(a+b)==a
#include<iostream> #include<algorithm> #include<cstdio> #include<cstring> #include<string> using namespace std; int main() { int n,a,b; while(scanf("%d%d%d",&n,&a,&b)!=EOF) { if(n<(a+a)) {printf("NO\n");continue;} else if(n<(a+b+a)) {printf("YES\n");continue;} else { n-=(a+b+a); if(n%(a+b)<=(a-1)) {printf("NO\n");continue;} else {printf("YES\n");continue;} } } }