多重组合数问题

题目描述:

  • n n n种物品,第i种物品有 a i a_i ai个,不同种类物品可以相互区分但相同种类的物品无法区分。从这些物品中取出 m m m个的话,有多少种取法,求出方案数模 M M M的余数。

限制条件:

  • 1 ≤ m , n , a i ≤ 1000 1≤m,n,a_i≤1000 1m,n,ai1000
  • 0 ≤ M ≤ 10000 0≤M≤10000 0M10000

样例说明:

  • 输入:
    • n=3
    • m=3
    • a={1,2,3}
    • M=10000
  • 输出:
    • 6=(0+0+3=0+1+2=0+2+1=1+0+2=1+1+1=1+2+0=m=3)
  • 注意:0+1+2表示:第1/2类物品取0个,第三类物品取3个。根据这个含义0+1+2和0+2+1不是重复的。

动态规划:

  • 步骤
    • dp数组含义 d p [ i ] [ j ] dp[i][j] dp[i][j]=从前 i i i种物品中取出 j j j个的组合数。取不出令为0.
    • 初始条件
      • d p [ 0 − n ] [ 0 ] = 1 dp[0-n][0]=1 dp[0n][0]=1
      • d p [ 1 ] [ 1 − m ] = { 1 a [ 1 ] ≥ j 0 a [ 1 ] &lt; j dp[1][1-m]=\begin{cases} 1 &amp; a[1]≥j \\ 0 &amp; a[1]&lt;j \end{cases} dp[1][1m]={10a[1]ja[1]<j
    • 递推公式 d p [ i ] [ j ] = ∑ k = 0 m i n ( j , a [ i ] ) d p [ i − 1 ] [ j − k ] dp[i][j]=∑_{k=0}^{min(j,a[i])}dp[i-1][j-k] dp[i][j]=k=0min(j,a[i])dp[i1][jk]
    • 递推方向:从上向下
    • 时间复杂度 O ( n m 2 ) O(nm^2) O(nm2)
    • 优化
      • 根据一般的经验,在只使用从上到下的递推的动态规划中如果能引入左到右的辅助递推,时间复杂度为更低。根据这一思想,我们化解上面的递推公式: ∑ k = 0 m i n ( j , a [ i ] ) d p [ i − 1 ] [ j − k ] = ∑ k = 1 m i n ( j , a [ i ] ) d p [ i − 1 ] [ j − k ] + d p [ i − 1 ] [ j ] ∑_{k=0}^{min(j,a[i])}dp[i-1][j-k]=∑_{k=1}^{min(j,a[i])}dp[i-1][j-k]+dp[i-1][j] k=0min(j,a[i])dp[i1][jk]=k=1min(j,a[i])dp[i1][jk]+dp[i1][j] = ∑ k = 0 m i n ( j − 1 , a [ i ] − 1 ) d p [ i − 1 ] [ j − ( 1 + k ) ] + d p [ i − 1 ] [ j ] =∑_{k=0}^{min(j-1,a[i]-1)}dp[i-1][j-(1+k)]+dp[i-1][j] =k=0min(j1,a[i]1)dp[i1][j(1+k)]+dp[i1][j]由于 d p [ i ] [ j − 1 ] = ∑ k = 0 m i n ( j − 1 , a [ i ] ) d p [ i − 1 ] [ j − 1 − k ] = ∑ k = 0 m i n ( j − 1 , a [ i ] ) d p [ i − 1 ] [ j − ( 1 − k ) ] dp[i][j-1]=∑_{k=0}^{min(j-1,a[i])}dp[i-1][j-1-k]=∑_{k=0}^{min(j-1,a[i])}dp[i-1][j-(1-k)] dp[i][j1]=k=0min(j1,a[i])dp[i1][j1k]=k=0min(j1,a[i])dp[i1][j(1k)] j ≤ a [ i ] j≤a[i] ja[i]时则有 j − 1 ≤ a [ i ] − 1 j-1≤a[i]-1 j1a[i]1 j − 1 ≤ a [ i ] j-1≤a[i] j1a[i],所以 m i n ( j − 1 , a [ i ] − 1 ) = m i n ( j − 1 , a [ i ] ) = j − 1 min(j-1,a[i]-1)=min(j-1,a[i])=j-1 min(j1,a[i]1)=min(j1,a[i])=j1 ∑ k = 0 m i n ( j − 1 , a [ i ] − 1 ) d p [ i − 1 ] [ j − ( 1 + k ) ] = ∑ k = 0 m i n ( j − 1 , a [ i ] ) d p [ i − 1 ] [ j − ( 1 + k ) ] = d p [ i ] [ j − 1 ] ∑_{k=0}^{min(j-1,a[i]-1)}dp[i-1][j-(1+k)]=∑_{k=0}^{min(j-1,a[i])}dp[i-1][j-(1+k)]=dp[i][j-1] k=0min(j1,a[i]1)dp[i1][j(1+k)]=k=0min(j1,a[i])dp[i1][j(1+k)]=dp[i][j1] j &gt; a [ i ] j&gt;a[i] j>a[i],所以 j − 1 &gt; a [ i ] − 1 j-1&gt;a[i]-1 j1>a[i]1 j − 1 ≥ a [ i ] j-1≥a[i] j1a[i],故 m i n ( j − 1 , a [ i ] − 1 ) = a [ i ] − 1 , m i n ( j − 1 , a [ i ] ) = a [ i ] min(j-1,a[i]-1)=a[i]-1,min(j-1,a[i])=a[i] min(j1,a[i]1)=a[i]1,min(j1,a[i])=a[i]则: ∑ k = 0 m i n ( j − 1 , a [ i ] − 1 ) d p [ i − 1 ] [ j − ( 1 + k ) ] = ∑ k = 0 m i n ( j − 1 , a [ i ] ) d p [ i − 1 ] [ j − ( 1 + k ) ] − d p [ i − 1 ] [ j − 1 − a [ i ] ) ] ∑_{k=0}^{min(j-1,a[i]-1)}dp[i-1][j-(1+k)]=∑_{k=0}^{min(j-1,a[i])}dp[i-1][j-(1+k)]-dp[i-1][j-1-a[i])] k=0min(j1,a[i]1)dp[i1][j(1+k)]=k=0min(j1,a[i])dp[i1][j(1+k)]dp[i1][j1a[i])] = d p [ i ] [ j − 1 ] − d p [ i − 1 ] [ j − 1 − a [ i ] ) ] =dp[i][j-1]-dp[i-1][j-1-a[i])] =dp[i][j1]dp[i1][j1a[i])]
      • 时间复杂度 O ( n m ) O(nm) O(nm)
    • 结果 d p [ n ] [ m ] dp[n][m] dp[n][m]

代码:

#include <iostream>
#define Max_N   1005
using namespace std;

int n,m,M;
int a[Max_N];
int dp[Max_N][Max_N];

//动态规划
void solve()
{
    //初始化
    for(int i=0; i<=n; i++)
        dp[i][0]=1;
    for(int j=1;j<=m;j++)
        dp[0][j]=0;

    //递推
    for(int i=1; i<=n; i++)
        for(int j=1; j<=m; j++)
        {
            dp[i][j]=dp[i][j-1]+dp[i-1][j];
            if (j>a[i])
                dp[i][j]-=dp[i-1][j-1-a[i]];
            dp[i][j]=dp[i][j]%M;
        }

    //结果
    cout<<dp[n][m]<<endl;

}

int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)
        cin>>a[i];
    cin>>M;
    solve();
    return 0;
}
/*
3 3
1 2 3
10000
*/

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值