ACM学习历程21——各种排列组合问题

在这篇博文中,介绍关于1—N和整型数组的排列算法,这些算法的主要用到了递归的思想,即在函数或子过程的内部直接或者间接调用自己的算法。递归算法解决问题的特点在于:递归本身就是在子过程或者函数里调用自身;在使用递归策略时,必须有一个明确的递归结束条件,也就是不存在死递归。当然递归的缺点也是明显的,递归算法虽然间接但是算法求解的运行效率较低。同时在递归调用的过程中系统为每一层的返回点、局部变量等开辟了栈,因而递归次数过多造成栈的溢出。虽然递归算法在效率和内存等方面存在缺点,但是递归算法形式简单易于理解,因此也是必须掌握的一种编程技巧。下面将以各种排列组合算法题目,介绍递归算法的应用。

一、生成1—N的排列:输入一个整数N,然后对1,2,3......N进行全排列,输出排列的情况

#include<iostream>
using namespace std;

//记录总数
int total=0;

void printPermutation(int n,int *array,int cur)
{
	int i,j;
	if(cur==n)
	{
		total++;
		for(i=0;i<n;i++)
			cout<<array[i]<<" ";
		cout<<endl;
	}
	else
	{
		for(i=1;i<=n;i++)
		{
			int flag=1;
			//判断i是否已经被选过
			for(j=0;j<cur;j++)
				if(array[j]==i)
				{
					flag=0;
					break;
				}
			//i没有被选过放入cur位置
			if(flag)
			{
				array[cur]=i;
				printPermutation(n,array,cur+1);
			}
		}
	}
}

int main()
{
	int n,array[10];
	cout<<"N=";
	cin>>n;
	printPermutation(n,array,0);
	cout<<"total="<<total<<endl;
	return 0;
}
二、使用next_permutation函数对数组中的元素进行全排列
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;

int main()
{
	int i,n,p[20];
	int count=0;
	cout<<"n=";
	cin>>n;
	for(i=0;i<n;i++)
		cin>>p[i];
	sort(p,p+n);
	do
	{
		count++;
		for(i=0;i<n;i++)
			cout<<p[i]<<" ";
		cout<<endl;
	}
	while(next_permutation(p,p+n));
	cout<<"count="<<count<<endl;
	return 0;
}
三、数组中元素的排列组合:要求数组中不能出现重复元素

#include<iostream>
#include<cstdio>
using namespace std;
int count=0;

void printPermutation(int n,int *arr,int *A,int cur)
{
	int i,j;
	if(cur==n)//递归边界
	{
		count++;
		for(i=0;i<n;i++)
			printf("%d ",A[i]);
		printf("\n");
	}
	else
		for(i=0;i<n;i++)//在A[i]中填各种数i
		{
			int ok=1;
			for(j=0;j<cur;j++)
				if(A[j]==arr[i])
				{
					ok=0;//如果i已经在A[0]~A[cur-1]出现过,则不能再选
					break;
				}

				if(ok)
				{
					A[cur]=arr[i];
					printPermutation(n,arr,A,cur+1);
				}
		}
}

int main()
{
	int array[100],arr[100];
	int i,n;
	cout<<"n=";
	cin>>n;
	for(i=0;i<n;i++)
		cin>>arr[i];
	printPermutation(n,arr,array,0);
	printf("count=%d\n",count);
	return 0;
}

需要注意的是这种方法要求数组中的元素不能重复,原因在于若数组中存在重复的元素,那么当程序执行到A[j]==arr[i]时,标志变量ok的值一直为0,所以cur+1的操作将不会发生,直到外层循环for(i=0;i<n;i++)结束整个递归函数就结束了。

四、数组的排列组合:允许数组中出现重复的元素

#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;

int total=0;

void printPermutation(int n,int *arr,int *array,int cur)
{
	int i,j;
	if(cur==n)
	{
		total++;
		for(i=0;i<n;i++)
			cout<<array[i]<<" ";
		cout<<endl;
	}
	else
	{	
		for(i=0;i<n;i++)
		{
			if(!i || arr[i]!=arr[i-1])
			{
				int c1=0,c2=0;
				//arr[i]被填的个数
				for(j=0;j<cur;j++)
					if(array[j]==arr[i])
						c1++;
				//array中arr[i]的个数
				for(j=0;j<n;j++)
					if(arr[j]==arr[i])
						c2++;
				if(c1<c2)
				{
					array[cur]=arr[i];
					printPermutation(n,arr,array,cur+1);
				}
			}
		}
	}
}

int main()
{
	int array[100];
	int arr[100],n,i;
	cout<<"n=";
	cin>>n;
	for(i=0;i<n;i++)
		cin>>arr[i];
	sort(arr,arr+n);
	printPermutation(n,arr,array,0);
	printf("total=%d\n",total);
	return 0;
}
注:上面数组中的元素可以重复,但是在调用递归函数之前要对该数组排序。

五、数组的排列组合:选取其中的几个数进行排列组合,允许数组中存在重复的元素

#include<iostream>
#include<algorithm>
#include<cstdio>

using namespace std;
int total=0;

void printPermutation(int m,int n,int *arr,int *array,int cur)
{
	int i,j;
	if(cur==m)//递归边界
	{
		total++;
		for(i=0;i<m;i++)
			printf("%d ",array[i]);
		printf("\n");
	}
	else
		for(i=0;i<n;i++)//在array中填各种数i
		{
			if(!i||arr[i]!=arr[i-1])
			{
				int c1=0,c2=0;
				for(j=0;j<cur;j++)
					if(array[j]==arr[i])
						c1++;
				for(j=0;j<n;j++)
					if(arr[i]==arr[j])
						c2++;
				if(c1<c2)
				{
					array[cur]=arr[i];
					printPermutation(m,n,arr,array,cur+1);
				}
			}
		}
}

int main()
{
	int array[100];
	int arr[50];
	int i,n;
	cout<<"n=";
	cin>>n;
	for(i=0;i<n;i++)
		cin>>arr[i];
	sort(arr,arr+n);
	printPermutation(3,n,arr,array,0);
	printf("total=%d\n",total);
	return 0;
}
阅读更多
版权声明:本文为博主原创文章,转载注明出处! https://blog.csdn.net/u010480899/article/details/52346652
个人分类: ACM心路
上一篇ACM学习历程20——竞赛中的简单数学问题之最大公约数、素数表、排列组合数
下一篇ACM学习历程22——进制转换
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭