【优化方法】牛顿法——Newton Method

一、牛顿法主要有两个应用方向:

  • 求方程的根
  • 求函数最优化求解

二、求方程的根:

  • 假设我们现在要求方程 f ( x ) = 0 f(x)=0 f(x)=0的根 x ∗ x^* x
    • 第一步:对 f ( x ) f(x) f(x)进行一阶泰勒展开 f ( x ) ≈ f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) f(x)≈f(x_0 )+f'(x_0 )(x-x_0) f(x)f(x0)+f(x0)(xx0) g ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) g(x)=f(x_0 )+f'(x_0 )(x-x_0) g(x)=f(x0)+f(x0)(xx0) g ( x ) g(x) g(x) f ( x ) f(x) f(x)的一阶泰勒展开,其实质就是 f ( x ) f(x) f(x) x 0 x_0 x0点的切线方程,根据泰勒公式的性质我们知道 f ( x ) f(x) f(x) g ( x ) g(x) g(x) x 0 x_0 x0点附近的值可以非常接近。
    • 第二步:求出 g ( x ) g(x) g(x)的根 x 1 x_1 x1 f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) = 0 f(x_0 )+f' (x_0 )(x-x_0 )=0 f(x0)+f(x0)(xx0)=0 x 1 = x 0 − f ( x 0 ) f ′ ( x 0 ) x_1=x_0-\frac{f(x_0 )}{f'(x_0 )} x1=x0f(x0)f(x0)
    • 第三步:重复第一步和第二步直到收敛: x k + 1 = x k − f ( x k )
  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
牛顿法是一种常用的最优化方法,在Matlab中也有相应的实现。通过引入梯度和Hesse矩阵对函数进行二次近似估计,牛顿法可以快速收敛到最优解。在Matlab中,可以使用内置的优化函数`fminunc`来实现牛顿法。该函数接受目标函数、初始点和其他参数作为输入,并返回最优解和最小值。 下面是使用牛顿法进行最优化的一般步骤: 1. 定义要最小化的目标函数。 2. 设置初始点。 3. 调用`fminunc`函数,设置相应的参数。 4. 检查返回的结果,包括最优解和最小值。 5. 可以使用`plot`函数绘制优化过程的图像。 请注意,牛顿法的收敛性和初始点的选取密切相关,选取不好的初始点可能导致算法不收敛。因此,在使用牛顿法时,需要根据具体问题仔细选择合适的初始点。 具体的使用方法和示例代码可以参考Matlab官方文档和相关教程。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [最优化方法牛顿方法matlab代码-从零开始](https://download.csdn.net/download/benchuspx/58807913)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [【最优化算法】基于【MATLAB】的牛顿法Newton Method】计算与推导](https://blog.csdn.net/dxcn01/article/details/125667872)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值