【优化方法】拟牛顿法之DFP算法

本文回顾了牛顿法的二阶收敛性及其求解Hessian矩阵的高复杂度问题,接着介绍了DFP(Davidon-Fletcher-Powell)拟牛顿法。DFP法通过上一步的信息模拟Hessian矩阵,避免直接计算,从而简化了牛顿法的计算过程。文章详细阐述了DFP算法的构造过程,包括如何利用梯度差和向量关系构建矩阵更新公式。
摘要由CSDN通过智能技术生成

一、牛顿法回顾

  • 上一篇牛顿法(Newton Method)中介绍了牛顿法的基本思路,牛顿法具有二阶收敛性,相比较最速下降法,收敛的速度更快。
  • 但是牛顿法也有一个缺点就是:求解Hessian矩阵复杂度比较大

1、下面是第k+1步的牛顿迭代:

  • 对于函数 f ( X ) f(X) f(X),其中 X = [ x 1 , x 2 , … , x n ] T X=[x_1,x_2,…,x_n ]^T X=[x1,x2,,xn]T为向量。在牛顿法的求解过程中,首先是将 f ( X ) f(X) f(X)函数在 X k + 1 X^{k+1} Xk+1处展开,并且令 f ( X ) f(X) f(X)函数在 X k + 1 X^{k+1} Xk+1处的梯度为: ∇ f ( X k + 1 ) = [ ∂ f ∂ x 1 , ∂ f ∂ x 2 , … , ∂ f ∂ x n ] T ∇f(X^{k+1} )=[\frac{∂f}{∂x_1},\frac{∂f}{∂x_2},…,\frac{∂f}{∂x_n}]^T f(Xk+1)=[x1f,x2f,,xnf]T
  • 泰勒展开为: f ( X ) = f ( X k + 1 ) + ∇ f ( X k + 1 ) T ( X − X k + 1 ) + 1 2 ( X − X k + 1 ) T G k + 1 ( X − X k + 1 ) + ⋯ + o f(X)=f(X^{k+1})+∇f(X^{k+1} )^T (X-X^{k+1})+\frac{1}{2} (X-X^{k+1} )^T G_{k+1} (X-X^{k+1})+⋯+o f(X)=f(Xk+1)+f(Xk+1)T(XXk+1)+21(XXk+1)TGk+1(XXk+1)++o
  • G k + 1 为 X = X k + 1 G_{k+1}为X=X^{k+1} Gk+1X=Xk+1的Hesse矩阵,省略高价无穷小量: f ( X ) = f ( X k + 1 ) + ∇ f ( X k + 1 ) T ( X − X k + 1 ) + 1 2 ( X − X k + 1 ) T G k + 1 ( X − X k + 1 ) f(X)=f(X^{k+1})+∇f(X^{k+1} )^T (X-X^{k+1})+\frac{1}{2} (X-X^{k+1} )^T G_{k+1} (X-X^{k+1}) f(X)=f(Xk+1)+f(Xk+1)T(XXk+1)+21(XXk+1)TGk+1(XXk+1)
  • X X X求导,并令导数为 0 0 0 ∇ f ( X ) = ∇ f ( X k + 1 ) T + G k + 1 ( X − X k + 1 ) = 0 ∇f(X)=∇f(X^{k+1} )^T+G_{k+1} (X-X^{k+1})=0 f(X)=f(Xk+1)T+Gk+1(XXk+1)=0
  • 求出 X X X X = X k + 1 − ∇ f ( X k + 1 ) G k + 1 = X k + 1 − G k + 1 − 1 ∇ f ( X k + 1 )
  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值