最优化方法Python计算:一元函数搜索算法——牛顿法

设函数 f ( x ) f(x) f(x),在 [ a , b ] [a,b] [a,b]上二阶连续可微且有唯一的最小值点 x 0 x_0 x0。由于 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上的单峰函数,故 f ′ ′ ( x ) > 0 f''(x)>0 f′′(x)>0 x ∈ ( a , b ) x\in(a,b) x(a,b)。对给定 x k ∈ [ a , b ] x_k\in[a,b] xk[a,b],函数 f ( x ) f(x) f(x) x k x_k xk的近旁近似为
q k ( x ) = f ( x k ) + f ′ ( x k ) ( x − x k ) + 1 2 f ′ ′ ( x k ) ( x − x k ) 2 . q_k(x)=f(x_k)+f'(x_k)(x-x_k)+\frac{1}{2}f''(x_k)(x-x_k)^2. qk(x)=f(xk)+f(xk)(xxk)+21f′′(xk)(xxk)2.
由于 q k ′ ( x k ) = f ′ ( x k ) q'_k(x_k)=f'(x_k) qk(xk)=f(xk) q k ′ ′ ( x k ) = f ′ ′ ( x k ) > 0 q''_k(x_k)=f''(x_k)>0 qk′′(xk)=f′′(xk)>0,故 x k − f ′ ( x k ) f ′ ′ ( x k ) x_k-\frac{f'(x_k)}{f''(x_k)} xkf′′(xk)f(xk) q k ( x ) q_k(x) qk(x)的驻点,也是唯一的极小值点。
在这里插入图片描述
我们用以下策略计算 f ( x ) f(x) f(x)的最优解 x 0 x_0 x0的搜索序列:取 x 1 ∈ [ a , b ] x_1\in[a,b] x1[a,b]充分接近 x 0 x_0 x0,从 k = 1 k=1 k=1开始作迭代,若 f ′ ( x k ) = 0 f'(x_k)=0 f(xk)=0,由 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上的可微性及单峰性知,找到最优解 x 0 = x k x_0=x_k x0=xk,如上图(a)所示。否则,我们用 q k ( x ) q_k(x) qk(x)的唯一极小值点 x k − f ′ ( x k ) f ′ ′ ( x k ) x_k-\frac{f'(x_k)}{f''(x_k)} xkf′′(xk)f(xk)作为第 k + 1 k+1 k+1个迭代点 x k + 1 x_{k+1} xk+1,即
x k + 1 = x k − f ′ ( x k ) f ′ ′ ( x k ) . x_{k+1}=x_k-\frac{f'(x_k)}{f''(x_k)}. xk+1=xkf′′(xk)f(xk).
无论 x k x_k xk是处于 f ( x ) f(x) f(x)的上升区间如上图(b)或处于 f ( x ) f(x) f(x)的下降区间如上图(c)所示, x k + 1 x_{k+1} xk+1都有望比 x k x_k xk更接近 f ( x ) f(x) f(x)的最小值点 x 0 x_0 x0。循环往复,直至遇到 f ′ ( x k ) = 0 f'(x_k)=0 f(xk)=0
按此策略的搜索算法称为牛顿方法,下列代码实现牛顿算法。

from scipy.optimize import OptimizeResult
def newton(fun, x1, gtol, **options):
    xk=x1
    f1,f2=der_scalar(fun,xk)
    k=1
    while abs(f1)>=gtol:
        k+=1
        xk-=f1/f2
        f1,f2=der_scalar(fun,xk)
    bestx=xk
    besty=fun(bestx)
    return OptimizeResult(fun=besty, x=bestx, nit=k)

程序的第2~12行定义实现牛顿算法的函数newton。参数fun表示函数 f ( x ) f(x) f(x),x1表示初始点 x 1 x_1 x1,gtol表示容错误差 ε \varepsilon ε,options用来使minimize_scalar将x1和gtol等实际参数传递给newton。第3行将迭代点xk初始化为x1。第4行调用导数计算函数der_scalar详见博文《一元函数导数的数值计算》)计算 f ( x ) f(x) f(x)的一、二阶导数置于f1和f2。第5行将迭代次数置为1。第6~9行的while循环执行迭代计算:第7行迭代次数k自增1,第8行计算迭代点 x k − f ′ ( x k ) f ′ ′ ( x k ) x_k-\frac{f'(x_k)}{f''(x_k)} xkf′′(xk)f(xk)更新xk。第9行再次调用der_scalar计算更新后迭代点处的一、二阶导数。循环往复,直至 ∣ f ′ ( x k ) ∣ < ε |f'(x_k)|<\varepsilon f(xk)<ε。第10、11行分别计算最优解近似值bestx及最优解处函数近似besty。值12行返回用计算结果besty(最优解处函数值 f ( x 0 ) f(x_0) f(x0)的近似值)、bestx(最优解 x 0 x_0 x0的近似值)和k(迭代次数)构建OptimizeResult类型对象作为返回值。
例1 用上列程序定义的newton函数,计算函数 f ( x ) = x 2 + 4 cos ⁡ x f(x)=x^2+4\cos{x} f(x)=x2+4cosx x 1 = 1.5 x_1=1.5 x1=1.5近旁的极小值点。
:下列代码完成计算。

import numpy as np                                                  #导入numpy
from scipy.optimize import minimize_scalar                          #导入minimize_scalar
f=lambda x:x**2+4*np.cos(x)                                         #设置目标函数
minimize_scalar(f,method=newton,options={'x1':1.5,'eps':1.48e-8})   #计算最优解

利用代码中的注释信息不难理解本程序。运行程序,输出

 fun: 2.316808419788213
 nit: 7
   x: 1.8954942647118507

读者可将此运行结果与博文《一元函数搜索算法——二分法》中例1对同一函数使用二分法计算的结果相比。在相同的容错误差水平下,牛顿法的效率(仅用7次迭代)显然高于二分法(用27次迭代)。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值