旋转卡壳——凸多边形最小面积外接矩形

凸多边形最小面积外接矩形

给定一个凸多边形 P , 面积最小的能装下 P (就外围而言)的矩形是怎样的呢? 从技术上说, 给定一个方向, 能计算出 P 的端点并且构由此造出外接矩形。 但是我们需要测试每个情形来获得每个矩形来计算最小面积吗? 谢天谢地, 我们不必那么干。

对于多边形 P 的一个外接矩形存在一条边与原多边形的边共线。

上述结论有力地限制了矩形的可能范围。 我们不仅不必去检测所有可能的方向, 而且只需要检测与多边形边数相等数量的矩形。 

图示上述结论: 四条切线(红色), 其中一条与多边形一条边重合, 确定了外接矩形(蓝色)。


一个简单的算法是依次将每条边作为与矩形重合的边进行计算。 但是这种构造矩形的方法涉及到计算多边形每条边端点, 一个花费 O(n) 时间(因为有 n 条边)的计算。 整个算法将有二次时间复杂度。

一个更高效的算法已经发现。 利用旋转卡壳, 我们可以在常数时间内实时更新, 而不是重新计算端点。
实际上, 考虑一个凸多边形, 拥有两对和 xy 方向上四个端点相切的切线。 四条线已经确定了一个多边形的外接矩形。 但是除非多边形有一条水平的或是垂直的边, 这个矩形的面积就不能算入最小面积中。
然而, 可以通过旋转线直到条件满足。 这个过程是下属算法的核心。 假设按照顺时针顺序输入一个凸多边形的 n 个顶点。

  1. 计算全部四个多边形的端点, 称之为 xminPxmaxPyminPymaxP
  2. 通过四个点构造 P 的四条切线。 他们确定了两个“卡壳”集合。
  3. 如果一条(或两条)线与一条边重合, 那么计算由四条线决定的矩形的面积, 并且保存为当前最小值。 否则将当前最小值定义为无穷大。
  4. 顺时针旋转线直到其中一条和多边形的一条边重合。
  5. 计算新矩形的面积, 并且和当前最小值比较。 如果小于当前最小值则更新, 并保存确定最小值的矩形信息。
  6. 重复步骤4和步骤5, 直到线旋转过的角度大于90度。
  7. 输出外接矩形的最小面积。

因为两对的“卡壳”确定了一个外接矩形, 这个算法考虑到了所有可能算出最小面积的矩形。 进一步, 除了初始值外, 算法的主循环只需要执行顶点总数多次。 因此算法是线性时间复杂度的。

一个相似但是鲜为人知的问题是最小周长外接矩形问题。 有趣的是这两个问题是完全不同的问题, 因为存在(尽管极少)最小面积外接矩形和最小周长外接矩形多边形不重合的多边形。

 

 

原文地址:http://cgm.cs.mcgill.ca/~orm/maer.html

 

转载请注明出处,谢谢!

  • 2
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
以下是Java实现的动态规划算法,用于凸多边形的最优三角剖分: ```java public class Triangulation { public static double minWeightTriangulation(double[] vertices) { int n = vertices.length / 2; double[][] dp = new double[n][n]; for (int len = 2; len < n; len++) { for (int i = 0; i < n - len; i++) { int j = i + len; dp[i][j] = Double.MAX_VALUE; for (int k = i + 1; k < j; k++) { double weight = dp[i][k] + dp[k][j] + triangleArea(vertices, i, k, j); if (weight < dp[i][j]) { dp[i][j] = weight; } } } } return dp[0][n - 1]; } private static double triangleArea(double[] vertices, int i, int j, int k) { double x1 = vertices[2 * i]; double y1 = vertices[2 * i + 1]; double x2 = vertices[2 * j]; double y2 = vertices[2 * j + 1]; double x3 = vertices[2 * k]; double y3 = vertices[2 * k + 1]; return Math.abs((x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)) / 2.0); } } ``` 这个算法中,`vertices`数组包含了多边形的所有顶点坐标,按照顺序存储,每个顶点有两个坐标值:x和y。`minWeightTriangulation`方返回最优三角剖分的权重和,即所有三角形的面积之和。 算法的核心是一个二维数组`dp`,其中`dp[i][j]`表示从第i个顶点到第j个顶点的最优三角剖分的权重和。通过动态规划的方式,逐步计算出所有子问题的最优解,最终得到全局最优解。 具体来说,算法的外层循环枚举子问题的长度,从2开始,一直到n-1。内层循环枚举子问题的起点i和终点j,计算出所有可能的三角剖分方式,并选择其中权重和最小的一个。这个过程的时间复杂度是O(n^3),可以通过一些优化来降低复杂度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值