算法分析——0-1背包问题

目录

问题描述

一、动态规划

二、动规法求解0-1背包

1.解题思路

2.具体代码


问题描述

有 N 件物品和一个容量是 V 的背包。每件物品有且只有一件。第 i 件物品的体积是v[i] ,价值是w[i] 。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。

0-1背包是一道很经典的算法,其解题思路也非常广泛,我们熟知的动态规划法、回溯法、分支法都可以解决;并且,由该问题也可以延伸出一系列更复杂的装在问题。


一、动态规划

动态规划有以下三个基本特征:
1.最优化原理(最优子结构性质):一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足最优化原理又称其具有最优子结构性质。
2.无后效性:将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又称为无后效性。
3.子问题的重叠性:如果有大量的重叠子问题,我们可以用空间将这些子问题的解存储下来,避免重复求解相同的子问题,从而提升效率。本质上,动态规划是一种以空间换时间的技术。
使用动态规划法,重点在于做状态转移时dp数组的含义。

二、动规法求解0-1背包

1.解题思路

根据之前的分析,可以知道最重要的是要明白dp数组的含义。在0-1背包中,dp[i][j]是指将0-i的物体放入容量为j的背包中。

状态转移:每一轮如果不放物品i,背包的最大价值为dp[i-1][j];

放入物品i,则是最大容量减去物品i的容量所余容量可放的最大价值,加上物品i的价值dp[i-1][j-weight[i]]+value[i];

最大价值则是每一步的最优解的集合,即max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i])

2.具体代码

代码如下:

int knapSack(int W, int wt[], int val[], int n) {
    int dp[N][N] = {0};
    for (int i = 0; i <= n; i++) {
        for (int w = 0; w <= W; w++) {
            if (i == 0 || w == 0)
                dp[i][w] = 0;
            else if (wt[i - 1] <= w)
                dp[i][w] = max(val[i ] + dp[i - 1][w - wt[i - 1]], dp[i - 1][w]);
            else
                dp[i][w] = dp[i - 1][w];
        }
    }
    return dp[n][W];
}
  • 9
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值