算法分析——汉诺塔问题

目录

前言

一、递归解决汉诺塔问题

二、主要代码

总结



前言

书接上回,本文介绍另一个经典的递归模型——汉诺塔。汉诺塔游戏是大家耳熟能详的数学问题。汉诺塔起源于古老的印度传说,其规则如下:

1.有三根邻近的柱子,标号为A,B,C。

2.A柱子上从下向上按金字塔状叠起来着n个不同大小的圆盘。

3.现在把所有的盘子一个一个挪动到柱子B上,而且每一次挪动同一根柱子上都不可以出现大盘子在小盘子上方。

不难发现,汉诺塔问题也可以利用递归的策略解决。思路为:

1.将n层汉诺塔划分至最小;

2.将所有未按规则移至柱C的塔中最大的单塔从柱A移动到柱C,此时需要由柱B承担一个“中间状态”,即将其他单塔按规则移到柱B上;

3.递归调用上述步骤,直至最小单塔移在柱C上。


一、递归解决汉诺塔问题

不难发现,汉诺塔问题也可以利用递归的策略解决。思路为:

1.将n层汉诺塔划分至最小;

2.将所有未按规则移至柱C的塔中最大的单塔从柱A移动到柱C,此时需要由柱B承担一个“中间状态”,即将其他单塔按规则移到柱B上;

3.递归调用上述步骤,直至最小单塔移在柱C上。

二、主要代码

void Hanoi(int n, int A,int C){
    if(n>0){
        Hanoi(n-1,A,B,C);//C作为辅助,将A上的n-1层塔挪在B上
        Move(n,A,B);//将A上编号为n的塔移到B上
        Hanoi(n-1,C,B,A);
        }
}

总结

汉诺塔问题是一个有趣的问题,但又非常清晰的体现了递归思想在问题求解中的应用,后序还要再进一步思考这个问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值