HDU 4924 Football Manager DP

【题目大意】

一个足球队有4种位置,门将、前锋、中锋、后卫,每种位置的总人数确定。从n个人中选11个人组成足球队,要使得队伍的总评分最高。总评分计算方式如下:总评分分为两部分,sum_ca,sum_pa。如果一个人确定了位置,总评分将会加上对应的ca,pa。特别的,所有人有喜欢、不喜欢的关系,如果队内的两人喜欢,那么sum_ca将加上一个w,如果不喜欢,则减去w。总评分大小判断关系:可将sum_ca,sum_pa视为一个pair,前者优先级高。

【思路】

这个居然是DP......这个居然是DP......这个居然是DP......这个DP居然还不是很难......

首先枚举具体选的11个人,把额外的加分算出来。dp[ i ][ j ][ k ][ k1 ]表示前i个人已经确定了位置,门将有j人,前锋有k人,中锋有k1人,最高的评分。然后推一下就好了。因为时间很紧,需要加上最优化剪枝。另外,我们可以通过交换,使得dp没有开的那一维最可能的大,这样的极限状态只有11*2*4*4 == 352。

//#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<cmath>
#include<cctype>
#include<string>
#include<algorithm>
#include<iostream>
#include<ctime>
#include<map>
#include<set>
using namespace std;
#define MP(x,y) make_pair((x),(y))
#define PB(x) push_back(x)
typedef __int64 LL;
//typedef unsigned __int64 ULL;
/* ****************** */
const int INF=100111222;
const double INFF=1e200;
const double eps=1e-8;
const int mod=1000000007;
const int NN=505;
const int MM=100010;
/* ****************** */

struct node
{
    bool fg[4];
    int ca[4],pa[4];
    void init()
    {
        memset(fg,false,sizeof(fg));
    }
}a[25];
int id_to[105];
int val[25][25];
int num[4];
bool fg;
int ans_ca,ans_pa;
int re[25];
pair<int,int> dp[12][3][5][5];


void goo()
{
    int ex=0,jian=0;
    int i,j,t,k,k1,t1,t2;
    int max_num[4];
    pair<int,int> temp;

    for(i=1;i<=11;i++)
        for(j=1;j<=11;j++)
        {
            ex += val[ re[i] ][ re[j] ];
        }

    memset(max_num,0,sizeof(max_num));
    for(i=1;i<=11;i++)
    {
        t=0;
        for(j=0;j<4;j++)
            if( a[ re[i] ].fg[j] )
            {
                t = max(t,a[re[i]].ca[j]);
                max_num[j]++;
            }
        jian+=t;
    }

    for(j=0;j<4;j++)
    {
        if(max_num[j]<num[j])
            return;
    }

    if(fg && ex+jian<ans_ca)
        return;


    for(i=0;i<=11;i++)
        for(j=0;j<=1;j++)
            for(k=0;k<=num[1];k++)
                for(k1=0;k1<=num[2];k1++)
                    dp[i][j][k][k1] = MP(-INF,-INF);

    dp[0][0][0][0] = MP(0,0);
    for(i=0;i<11;i++)
        for(j=0;j<=1;j++)
            for(k=0;k<=num[1];k++)
                for(k1=0;k1<=num[2];k1++)
                    if(dp[i][j][k][k1].first!=-INF)
                    {
                        t1 = dp[i][j][k][k1].first;
                        t2 = dp[i][j][k][k1].second;
                        if(a[re[i+1]].fg[0])
                        {
                            temp = MP(t1+a[re[i+1]].ca[0],t2+a[re[i+1]].pa[0]);
                            dp[i+1][j+1][k][k1]=max(dp[i+1][j+1][k][k1],temp);
                        }
                        if(a[re[i+1]].fg[1])
                        {
                            temp = MP(t1+a[re[i+1]].ca[1],t2+a[re[i+1]].pa[1]);
                            dp[i+1][j][k+1][k1]=max(dp[i+1][j][k+1][k1],temp);
                        }
                        if(a[re[i+1]].fg[2])
                        {
                            temp = MP(t1+a[re[i+1]].ca[2],t2+a[re[i+1]].pa[2]);
                            dp[i+1][j][k][k1+1]=max(dp[i+1][j][k][k1+1],temp);
                        }
                        if(a[re[i+1]].fg[3])
                        {
                            temp = MP(t1+a[re[i+1]].ca[3],t2+a[re[i+1]].pa[3]);
                            dp[i+1][j][k][k1]=max(dp[i+1][j][k][k1],temp);
                        }
                    }

    temp = dp[11][1][num[1]][num[2]];
    if(temp.first>-INF)
    {
        int cca = temp.first + ex;
        int ppa = temp.second;

        if(fg)
        {
            if(cca>ans_ca)
            {
                ans_ca = cca;
                ans_pa = ppa;
            }
            else if(cca == ans_ca)
                ans_pa = max(ans_pa,ppa);
        }
        else
        {
            fg=true;
            ans_ca = cca;
            ans_pa = ppa;
        }
    }

}

void dfs(int now,int deep,int ge)
{
    if(ge==11)
    {
        goo();
        return;
    }
    if(now==deep+1)
        return;

    //xuan
    re[ge+1]=now;
    dfs(now+1,deep,ge+1);

    //bu xuan
    if(ge+deep-now>=11)
        dfs(now+1,deep,ge);
}

void solve(int n)
{
    fg=false;

    dfs(1,n,0);

    if(fg)
    {
        printf("%d %d\n",ans_ca,ans_pa);
    }
    else
    {
        puts("Poor Manager!");
    }
}

int main()
{
    char op[50];
    int cas;
    int n,m,ge,ca,pa,id;
    int wei,i,j,w,u,v,t;
    scanf("%d",&cas);
    while(cas--)
    {
        scanf("%d",&n);

        memset(id_to,0,sizeof(id_to));

        for(i=1;i<=n;i++)
        {
            scanf("%d",&t);

            id_to[t] = i;

            scanf("%d",&ge);

            a[i].init();

            for(j=0;j<ge;j++)
            {
                scanf("%s%d%d",op,&ca,&pa);
                if(strcmp(op,"GK")==0)
                    wei = 0;
                else if(strcmp(op,"DF")==0)
                    wei = 1;
                else if(strcmp(op,"MF")==0)
                    wei = 2;
                else
                    wei = 3;

                if(a[i].fg[wei])
                {
                    if(ca>a[i].ca[wei])
                    {
                        a[i].ca[wei] = ca;
                        a[i].pa[wei] = pa;
                    }
                    else if(ca==a[i].ca[wei])
                        a[i].pa[wei] = max(a[i].pa[wei], pa);
                }
                else
                {
                    a[i].fg[wei] = true;
                    a[i].ca[wei] = ca;
                    a[i].pa[wei] = pa;
                }
            }
        }

        memset(val,0,sizeof(val));
        scanf("%d",&m);
        for(i=0;i<m;i++)
        {
            scanf("%d%d%s%d",&u,&v,op,&w);

            u = id_to[u];
            v = id_to[v];

            if(op[0]=='D')
            {
                val[v][u]-=w;
            }
            else
            {
                val[v][u]+=w;
            }
        }


        num[0]=1;
        scanf("%d-%d-%d",&num[1],&num[2],&num[3]);

        id=3;
        if(num[1]>num[2] && num[1]>num[3])
            id=1;
        if(num[2]>num[1] && num[2]>num[3])
            id=2;

        swap(num[id],num[3]);
        for(i=1;i<=n;i++)
        {
            swap(a[i].fg[id],a[i].fg[3]);
            swap(a[i].ca[id],a[i].ca[3]);
            swap(a[i].pa[id],a[i].pa[3]);
        }

        solve(n);
    }
    return 0;
}


### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值