[LeeCode 887. 鸡蛋掉落] DP+二分

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/ACMore_Xiong/article/details/82317364

[LeeCode 887. 鸡蛋掉落] DP+二分

分类: 动态规划 二分

1. 题目链接

[LeeCode 887. 鸡蛋掉落]

2. 题目描述

题意描述

3. 解题思路

首先,令$dp[i][j+1]$表示有$i$个鸡蛋,建筑物为 $j$层时的答案. 那么, 我们容易想到下面的DP的状态转移方程:
$$dp[i][j]=\mathrm{min}\{\mathrm{max}(dp[i-1][j-k],dp[i][k])+1\}$$
其中, $k\in [0, j]$.
此时, DP的复杂度是$O(KN^2)$. 打表或者直接分析转移方程,可以发现, $dp[i][j]>=dp[i][j-1], dp[i][j]<=dp[i-1][j]$.
那么, 对于给定$i,j$, $dp[i-1][j-k]$随$k$单调递减,$dp[i-1][k]$随$k$单调递增.那么可以二分找到使得 $\mathrm{max}(dp[i-1][j-k],dp[i][k])+1\}$最小的$k$.
感觉理论上三分应该也是可以的,但是不知道为什么三分就是不太对...

4. 参考代码

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;

const long double eps = 1e-8;
const int inf = 0x3f3f3f3f;
const ll infl = 0x3f3f3f3f3f3f3f3f;

int dp[105][10005];

class Solution {
public:
    int superEggDrop(int K, int N) {
        memset(dp, 0x3f, sizeof(dp));
        for(int i = 0; i <= K; ++i) dp[i][1] = 0;
        for(int j = 1; j <= N + 1; ++j) dp[1][j] = j - 1;
        for(int i = 2; i <= K; ++i) {
            for(int j = 2; j <= N + 1; ++j) {
                //for(int m = j/2; m <= j; ++m) 
                    //dp[i][j] = min(dp[i][j], max(dp[i - 1][j - m], dp[i][m]) + 1);
                /*
                int lb = 0, ub = j, lmd, rmd;
                while(lb <= ub) {
                    lmd = (lb + ub) >> 1, rmd = (lmd + ub) >> 1;
                    int lval = max(dp[i - 1][j - lmd], dp[i][lmd]);
                    int rval = max(dp[i - 1][j - rmd], dp[i][rmd]);
                    dp[i][j] = min(lval, rval) + 1;
                    if(lval == rval) lb = lmd + 1, ub = rmd - 1;
                    else if(lval < rval) ub = rmd;
                    else lb = lmd;
                }
                if(0 <= lb && lb <= j) dp[i][j] = min(dp[i][j], max(dp[i - 1][j - lb], dp[i][lb]) + 1);
                if(0 <= ub && ub <= j) dp[i][j] = min(dp[i][j], max(dp[i - 1][j - ub], dp[i][ub]) + 1);
                */
                int lb = 0, ub = j;
                while(lb <= ub) {
                    int md = (lb + ub) >> 1;
                    dp[i][j] = min(dp[i][j], max(dp[i - 1][j - md], dp[i][md]) + 1);
                    if(dp[i - 1][j - md] == dp[i][md]) lb = md + 1, ub = md - 1;
                    else if(dp[i - 1][j - md] > dp[i][md]) lb = md + 1;
                    else ub = md - 1;
                }
            }
        }
        return dp[K][N + 1];
    }
};

#ifdef __LOCAL_WONZY__
int main() {
    freopen("input.txt", "r", stdin);
    Solution solu;
    cout << solu.superEggDrop(1, 2) << endl;
    cout << solu.superEggDrop(2, 6) << endl;
    cout << solu.superEggDrop(3, 14) << endl;
    cout << solu.superEggDrop(3, 200) << endl;
    return 0;
}
#endif
展开阅读全文

addHP 二分+dp

11-12

问题描述 :nnn最近小白迷上了剑侠情缘,可惜不幸的是他千挑万选拜入了一个叫做“万花”的门派。事实上,这个门派的主要作用就是在别人受到伤害的时候,施展技能使得好友的生命值得以恢复。n可是万花的技能有一个缺陷,那就是玩家所谓的读条。n读条就是一个技能的施法时间,也就是说当我按下一个技能的操作之后,这个技能会在S秒之后才会被释放出来。n万花拥有数个加血技能,它们的施法时间和加血量也不尽相同。现在小白和大家一起去下副本,责任当然是负责照顾好MT(Main Tank)。根据小白多年来的经验,可以推算出BOSS每一次攻击对MT造成的伤害,小白希望你帮忙算一下MT是否能够存活下来,如果可以,那么怎么加血,才能使得MT的最低血量最高?(MT的血量一旦太低,会导致大家的惊恐,所以小白希望知道怎么加血才能让MT曾经被打击造成的血量最低值尽可能高一些)。 n输入:nnn第一行输入三个数字 n和m,HP,n 代表BOSS的攻击次数,m代表万花的加血技能有多少个,HP代表MT初始状态下有多少血(此时HP为MT的上限)。n接下去n个数字,第i个数字代表BOSS在第i秒对MT造成多少伤害。n接下去m行数字,每行输入一个time和一个add;nTime代表技能如果在k时间开始读条,那么会在k + time时间完成效果nAdd代表该技能可以恢复多少HP,但不允许超过MT的上限。nn由于我们会偷袭BOSS,所以可以看做从0时间开始加血,而BOSS的伤害从1时间点才开始计算,但是BOSS得伤害会在加血技能之前被计算。nnn0 <= n ,m<= 10000 ,0 <= HP, time , add <=1000 , nn输出:nnn第一行输入三个数字 n和m,HP,n 代表BOSS的攻击次数,m代表万花的加血技能有多少个,HP代表MT初始状态下有多少血(此时HP为MT的上限)。n接下去n个数字,第i个数字代表BOSS在第i秒对MT造成多少伤害。n接下去m行数字,每行输入一个time和一个add;nTime代表技能如果在k时间开始读条,那么会在k + time时间完成效果nAdd代表该技能可以恢复多少HP,但不允许超过MT的上限。nn由于我们会偷袭BOSS,所以可以看做从0时间开始加血,而BOSS的伤害从1时间点才开始计算,但是BOSS得伤害会在加血技能之前被计算。nnn0 <= n ,m<= 10000 ,0 <= HP, time , add <=1000 ,nn样例输入:nn10 2 100n1 1 1 1 1 1 1 1 1 1n2 10n1 1n样例输出:nn99 问答

没有更多推荐了,返回首页