分析:积累树的dfs序列的一些关键性质
1.对于一个整树,他的dfs序是确定的,即无论从任何位置开始,都是整个dfs序的子序列
2.是否能够遍历到子树的第k个位置与当前以子节点为根的子树的大小有关,如果超过则不存在,否则一定能遍历到
3.对于一棵树,它的节点只有两个状态,即父节点和子节点,因此它的遍历是“块状遍历”
#include<bits/stdc++.h>
using namespace std;
const int N = 2e5 + 7;
int p[N] , q[N] , sz[N];
vector<int> g[N];
int n , m , tot;
q记录当前dfs序列,p记录当前子树的位置
void dfs(int u)
{
sz[u] = 1; 当前只算自己的大小
q[++ tot] = u;
p[u] = tot;
for (int i = 0; i < g[u].size(); ++ i)
{
dfs(g[u][i]);
sz[u] += sz[g[u][i]];
}
}
int main()
{
cin >> n >> m;
for (int i = 2; i <= n; ++ i)
{
int t;
cin >> t;
g[t].push_back(i);
}
for(int i = 1; i <= n; ++ i) sort(g[i].begin() , g[i].end()); 按题目顺序遍历
dfs(1);
while(m --)
{
int u , k;
cin >> u >> k;
if (k > sz[u]) puts("-1");
else cout << q[p[u] + k - 1] << endl; 推导下这个长度即可
}
return 0;
}