数论专题笔记(1)——同余,整除,欧拉定理,中国剩余定理

本文深入探讨了数论中的重要概念,包括同余定义及其性质,如反身性、对称性和传递性,并介绍了幂运算在同余关系中的应用。此外,详细讲解了一次线性同余方程的解法,包括贝祖定理和扩展欧几里得算法。接着,阐述了中国剩余定理的两种解法,并简要提及了欧拉定理及其证明,包括费马小定理作为特殊情况。最后,提到了欧拉函数的计算公式和积性性质。
摘要由CSDN通过智能技术生成

一. 同余定义:给定一个正整数m,如果两个整数a和b满足a-b能够被m整除,即(a-b)/m得到一个整数,那么就称整数a与b对模m同余,记作a≡b(mod m)。对模m同余是整数的一个等价关系。

显然,有如下事实
(1) 若a≡0(mod m) 则 m | a;
(2) a≡b(mod m)等价于a与b分别用m去除,余数相同.

性质:
(1) 反身性 a ≡ a(modm) 显然成立;
(2) 对称性 a ≡ b(modm) <=> b ≡ a(modm)
(3) 传递性 若 a ≡ b(modm) , b ≡ c(modm) 则 a ≡ c (modm)
(4) 幂运算 若 a ≡ b ( m o d m ) a≡b(modm) ab(modm) a n ≡ b n ( m o d m ) a^ n ≡ b^ n (modm) anbn(modm)

证明(3) 由前提知 m | (a - b) , m | (b - c ) 由线性同余可得 m | (a - b + b - c) -> m | (a - c)
证明(4) 对前提使用n次乘法即可得结论

7.除法:若 a c ≡ b c ( m o d m ) ac ≡ bc(modm) acbc(modm),则 a ≡ b ( m o d g c d ( c , m ) ) a≡b(modgcd(c,m)) ab(modgcd(c,m)) ,其中gcd(c,m)表示c和m的最大公约数,
特殊地若 g c d ( c , m ) = 1 gcd(c,m)=1 gcd(c,m)=1 a ≡ b ( m o d m ) a ≡ b(modm) ab(modm)

二.同余方程(线性同余方程)
1.对于阶数为一次的同余方程称之为线性同余方程
也即是 x x x满足 a x ≡ b ( m o d m ) ax≡b(modm) axb(modm) 的解,应当注意到不只有一个x满足题意,应该是一组解均满足题意
将等式转化 原式 = a x + m y = b ax+my=b ax+my=b (这里取 − m ∣ ( a x − b ) -m|(ax-b) m(axb) 形式上对应统一)
由贝祖定理可得 若 a x + b y = c ax+by=c ax+by=c有解,则 g c d ( a , b ) ∣ c gcd(a , b) | c gcd(a,b)c
所以若 g c d ( a , m ) ∣ b gcd(a , m) | b gcd(a,m)b 则方程有解,反之无解
解系由特解+通解组成 设特解为 x 0 x_0 x0 , y 0 y_0 y0 x = x 0 + k ∗ b / d x = x_0 + k * b / d x=x0+kb/d , y = y 0 − k ∗ a / d y = y_0 - k * a / d y=y0ka/d 具体实现由扩展欧几里得实现;

2.线性同余方程组(中国剩余定理)
在这里插入图片描述
解(1):设M = ∏ i = 1 n m i \prod_{i=1}^n m_i i=1nmi M i = M / m i M_i = M / m_i

  • 5
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值