大型停车区域的电动汽车充电桩规划

摘要:目前电动汽车充电桩( EVCP)规划通常针对区县级较大区域开展,但是对园区级区域进行EVCP规划更有利于提高投资者的积极性和周边电动汽车(EV)用户的体验。以车流量较大的大型停车区域为研究对象,通过调研获得区域内EV的电池容量、停放情况、电量分布以及充电意愿等统计数据,并基于这些数据应用蒙特卡洛法得出区域内EV充电负荷的时域分布。依据区域内的电网信息以及EV的充电负荷分布,给出以投资成本电网网损及用户满意度综合最优为目标的EVCP规划设计方法。最后以某机场远端大型停车场为算例,验证了所提园区级EVCP规划方法的有效性,该方法相较于传统EVCP的规划方法更加经济合理。

关键词:电动汽车;充电桩规划;充电负荷预测;多目标优化

一、引言

当前化石能源日渐匮乏,环境污染问题愈发严重,作为燃油汽车的升级替代产品,电动汽车(Electric Vehicle,EV)的保有量未来会保持快速上升的趋势。在此背景下,EV发展与充电桩(Electric Vehicle Charging Piles,EVCP)规划建设的不匹配问题日益凸显。

在EVCP 的规划设计过程中,核心问题是预测EV的充电需求即充电负荷,一般通过分析规划区域中道路交通网架、EV的出行规律及用户充电习惯等因素计算得出。基于地块功能和地理属性将区域划分为住宅区、办公区、旅游区、商业区和教育区5类,并综合不同区域的车流通畅度情况完成 EV 充电负荷的预测。通过分析不同类型汽车在具体场景下的停车规律,并采用蒙特卡洺算法模拟车主驾驶、停放和充电行为预测出区域内EV 充电负荷的时空分布特性。依据交通路网拓扑和出行数据模拟 EV 的行驶特性,并完成 E充电需求的时空分布预测。基于居民出行数据构建不同复杂度的出行链模型,并使用最短路径算法选择行驶路径来完成EV 充电需求的预测。根据充电站的现场实际统计数据,利用泊松分布、轮盘选择和均匀分布对EV开始充电的荷电量(State of Charge,SOc)和充电次数进行分析,建立了 EV 充电站的负荷预测模型。采用大数据和机器学习技术对 EV 充电站的实时数据进行评估,提出一种基于数据流的流式逻辑回归模型,充电站运营商可以根据这些数据开展优化规划。通过“滴滴开放数据平台”申请得到某城市区域在一段时间内的出行订单及 GPS 定位数据,在对 EV 行驶轨迹大数据集进行清洗与挖掘后,基于动态能耗理论构建了 EV 充电需求的时空分布预估模型。

二、EV的充电需求预测

2.1 停车区域 EV 充电负荷的影响因素分析

大型停车区域中 EVCP 的类型和位置与停车位类型及分布情况密切相关。不同类型和用途的EV具有不同的电池容量、停放模式和充电意愿,这些因素会影响电动汽车的充电需求,因此需要通过调研统计来获得这些基础数据。

首先对EV 的电池容量进行调研,得到停车区域内3类车型对应的电池容量如图1所示。

图1中列出了3类车型的5种常见电池

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值