题目:
有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。如果你胜,你第1次怎样取子?
Input
思路:除非b-a的差值恰好等于b[i]-a[i]的差值,这种情况需要同时减去a-a[b-a],其他情况,要么a=a[i]或者a=b[i],要么b=a[i]或者b=a[i],枚举一下就可以了
代码:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<algorithm>
#include<ctime>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<list>
#include<numeric>
using namespace std;
#define LL long long
#define ULL unsigned long long
#define INF 0x3f3f3f3fn
#define mm(a,b) memset(a,b,sizeof(a))
#define PP puts("*********************");
template<class T> T f_abs(T a){ return a > 0 ? a : -a; }
template<class T> T gcd(T a, T b){ return b ? gcd(b, a%b) : a; }
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
// 0x3f3f3f3f3f3f3f3f
//0x3f3f3f3f
const int maxn=1e6+5;
int a[maxn],b[maxn];
int cnt;
void solve(int x,int y){
for(int i=1;i<=x;i++){
if(a[i]==x&&y>b[i]){
printf("%d %d\n",a[i],b[i]);
return;
}
if(a[i]==y&&x>b[i]){
printf("%d %d\n",a[i],b[i]);
return;
}
if(b[i]==x&&y>a[i]){
printf("%d %d\n",a[i],b[i]);
return;
}
if(b[i]==y&&x>a[i]){
printf("%d %d\n",a[i],b[i]);
return;
}
}
}
int main(){
int x,y;
for(int i=0;i<maxn;i++){
a[i]=(int)(i*(1+sqrt(5.0))/2);
b[i]=a[i]+i;
if(b[i]>=1000000){
cnt=i;
break;
}
}
while(~scanf("%d%d",&x,&y)){
if(!x&&!y)
break;
if(x>y)
swap(x,y);
if(x==(int)((1+sqrt(5.0))/2*(y-x))){
printf("0\n");
continue;
}
printf("1\n");
if(y-x<=cnt&&x-a[y-x]==y-b[y-x])
printf("%d %d\n",a[y-x],b[y-x]);
solve(x,y);
}
return 0;
}