HDU - 1524 A Chess Game 有向无环图上的博弈

题目:在有n个顶点的有向无环图上玩游戏,一些顶点上面有象棋,游戏者轮流操作,每次可以选择一个象棋将其移动到他的后继节点,不能进行操作的人输,问先手必胜还是先手必败。

思路:把节点的sg值全部求出来就行了。

代码:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<algorithm>
#include<ctime>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<list>
#include<numeric>
using namespace std;
#define LL long long
#define ULL unsigned long long
#define INF 0x3f3f3f3f
#define mm(a,b) memset(a,b,sizeof(a))
#define PP puts("*********************");
template<class T> T f_abs(T a){ return a > 0 ? a : -a; }
template<class T> T gcd(T a, T b){ return b ? gcd(b, a%b) : a; }
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
// 0x3f3f3f3f3f3f3f3f
//0x3f3f3f3f

const int maxn=1e3+50;
vector<int> G[maxn];
int deg[maxn];
int sg[maxn];
int get_sg(int u){
    if(sg[u]!=-1)
        return sg[u];
    bool mex[10*maxn];
    mm(mex,false);
    for(int i=0;i<G[u].size();i++){
        int v=G[u][i];
        get_sg(v);
        mex[sg[v]]=true;
    }
    for(int i=0;;i++)
        if(!mex[i]){
            sg[u]=i;
            break;
        }
    return sg[u];
}
int main(){

    int n,m,p,x;
    while(~scanf("%d",&n)){
        for(int i=0;i<n;i++){
            G[i].clear();
            deg[i]=0;
        }
        for(int i=0;i<n;i++){
            scanf("%d",&p);
            while(p--){
                scanf("%d",&x);
                G[i].push_back(x);
                deg[x]++;
            }
        }
        mm(sg,-1);
        for(int i=0;i<n;i++)
            if(deg[i]==0)
                get_sg(i);
        while(~scanf("%d",&m)){
            if(m==0)
                break;
            int ans=0;
            for(int i=0;i<m;i++){
                scanf("%d",&x);
                get_sg(x);
                ans=(ans^sg[x]);
            }
            if(ans>0) printf("WIN\n");
            else printf("LOSE\n");
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值