一、题目描述
给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明: 你不能倾斜容器,且 n 的值至少为 2。
图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例:
输入: [1,8,6,2,5,4,8,3,7]
输出: 49
二、题解
思路:
本题的最优解法是双指针。初始状态,左右指针指向左右两端的数字,每次移动对应数字较小的那个指针。取每次计算出可以容纳水量的最大值,即为最后结果。
双指针解法的正确性:假设左指针和右指针指向的数字分别为x和y,且x≤y,指针之间的距离为t,则可容纳的水量为 x ∗ t x*t x∗t 。若左指针不动,将右指针不断向左移动,这个过程中计算得到的容量一定不会超过 x ∗ t x*t x∗t 。因此每次应该移动对应数字较小的指针。
代码:
class Solution {
public:
int maxArea(vector<int>& height) {
int res = INT_MIN;
int i = 0, j = int(height.size()) - 1;
while (i < j)
{
int area = min(height[i], height[j])*(j - i);
if (area > res)
{
res = area;
}
if (height[i] > height[j])
{
j--;
}
else
{
i++;
}
}
return res;
}
};