LeetCode#11.盛最多水的容器

11.盛最多水的容器

一、题目描述

给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

说明: 你不能倾斜容器,且 n 的值至少为 2。

输入数组
图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。

示例:

输入: [1,8,6,2,5,4,8,3,7]
输出: 49

二、题解

思路:
本题的最优解法是双指针。初始状态,左右指针指向左右两端的数字,每次移动对应数字较小的那个指针。取每次计算出可以容纳水量的最大值,即为最后结果。

双指针解法的正确性:假设左指针和右指针指向的数字分别为x和y,且x≤y,指针之间的距离为t,则可容纳的水量为 x ∗ t x*t xt 。若左指针不动,将右指针不断向左移动,这个过程中计算得到的容量一定不会超过 x ∗ t x*t xt 。因此每次应该移动对应数字较小的指针。

代码:

class Solution {
public:
    int maxArea(vector<int>& height) {
        int res = INT_MIN;
        int i = 0, j = int(height.size()) - 1;
        while (i < j)
        {
            int area = min(height[i], height[j])*(j - i);
            if (area > res)
            {
                res = area;
            }
            
            if (height[i] > height[j])
            {
                j--;
            }
            else
            {
                i++;
            }
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值