题意:给你一些区间,现在有m个查询,求出每个查询的区间内的最大的不相交区间个数
分析:
几天前那道说谎问题时用dp的摞箱子模型求的最大的不相交区间个数,但是这题不能用这个方法,因为这题是动态的查询,不可能每个查询dp一次,超时。
这题用贪心策略。求区间[l~r]里的最大不相交区间,贪心策略就应该先选该区间内右端点最小的,这样给以后待选的区间留下更大的空间,所以我们的做法就是先按照区间的右端点排序,然后每次查询依次挑出查询区间里右端点最小的,并且把查询区间的左端点更新为刚才挑出的区间的右端点(这个处理的作用是保证选出不相交的区间),如果现在访问的区间的右端点已经大于查询区间的右端点,就break跳出循环。挑出第一个右端点最小的区间用二分,注意二分法的应用。
代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
int n,m;
struct node{
int l,r;
}a[100005];
bool cmp(node a,node b)
{
return a.r<b.r;
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF){
for(int i=0;i<n;i++) scanf("%d%d",&a[i].l,&a[i].r);
sort(a,a+n,cmp);
int p,q;
while(m--){
scanf("%d%d",&p,&q);
int l=0,r=n-1;
int pos=-1;
while(l<=r){
int mid=(l+r)>>1;
if(a[mid].r<=p){
pos=mid;
l=mid+1;
}
else r=mid-1;
}
int tmp=p,ans=0;
// for(int i=0;i<n;i++) cout<<a[i].l<<" "<<a[i].r<<endl;cout<<endl;
for(int i=pos+1;i<n;i++){
if(a[i].r<=q){
if(a[i].l>=tmp){
// cout<<a[pos].l<<" "<<a[pos].r<<endl;
ans++;
tmp=a[i].r;
}
}
else break;
}
printf("%d\n",ans);
}
}
}