欧几里得应用及其拓展

先来介绍一下欧几里得的应用

欧几里得定理主要用于求两个数的最大公约数

核心等式 gcd(a,b)=gcd(b%a,a)   前提是a不等于0

证明:

  证明两个正数大小相等可以转换为证明这两个整数可以相互整除

  先设d=gcd(a,b)  现在证明d | gcd(b%a,a)

  b%a=b-[b/a]*a,由于b%a是a与b的线性组合,故有d | (b%a)又因为d | a,所以gcd(a,b) | gcd(b%a,a)成立

  下证gcd(b%a,a) | gcd(a,b)成立

  设gcd(b%a,a)=d, 则有d | (b%a)以及d | a;

  又因为b%a=b-[b/a]*a,所以 d | b-[b/a]*a+[b/a]*a,也就是说d | b,所以有gcd(b%a,a) | gcd(a,b)成立

  得证!

给定 n 对正整数 ai,bi,请你求出每对数的最大公约数。

输入格式

第一行包含整数 n。

接下来 n 行,每行包含一个整数对 ai,bi。

输出格式

输出共 n 行,每行输出一个整数对的最大公约数。

数据范围

1≤n≤10^5
1≤ai,bi≤2×10^9

输入样例:

2
3 6
4 6

输出样例:

3
2


#include<bits/stdc++.h>
using namespace std;
int gcd(int x,int y)
{
    return x==0?y:gcd(y%x,x);
}
int main()
{
    int n;
    cin>>n;
    int a,b;
    while(n--)
    {
        cin>>a>>b;
        printf("%d\n",gcd(a,b));
    }
    return 0;
}

下面来介绍一下扩展欧几里得及其应用

先引入一下裴蜀定理:对于任何一对整数a,b,对于a*x+b*y=gcd(a,b)一定有解

接下来我将通过构造解的方法来证明这个定理

a*x1+b*y1=gcd(a,b)     (b%a)*x2+a*y2=gcd(b%a,a)

由欧几里得定理我们可以知道gcd(a,b)=gcd(b%a,a);

则a*x1+b*y1=(b%a)*x2+a*y2①

(b%a)*x2+a*y2 = (b-[b/a]*a)*x2+a*y2 = a*(y2-[b/a]*x2)+b*x2②

①②a与b对应相等,可知   x1=y2-[b/a]*x2     y1=x2

由此我们可以通过递归求出x,y;

给定 n 对正整数 ai,bi,对于每对数,求出一组 xi,yi,使其满足 ai*xi+bi*yi=gcd(ai,bi) 。

输入格式

第一行包含整数 n。

接下来 n 行,每行包含两个整数 ai,bi。

输出格式

输出共 n行,对于每组 ai,bi求出一组满足条件的 xi,yi每组结果占一行。

本题答案不唯一,输出任意满足条件的 xi,yi均可。

数据范围

1≤n≤10^5
1≤ai,bi≤2×10^9

输入样例:

2
4 6
8 18

输出样例:

-1 1
-2 1


#include<bits/stdc++.h>
using namespace std;
int exgcd(int a,int b,int &x,int &y)
{
    if(a==0)
    {
        x=0;y=1;
        return b;
    }
    int d=exgcd(b%a,a,y,x);
    x-=b/a*y;
    return d;
} 
int main()
{
    int n,a,b;
    cin>>n;
    while(n--)
    {
        cin>>a>>b;
        int x,y;
        int t=exgcd(a,b,x,y);
        printf("%d %d\n",x,y);
    }
    return 0;
}

下面引入一道欧几里得扩展的变形题目

给定 n 组数据 ai,bi,mi,对于每组数求出一个 xi,使其满足 ai×xi≡bi(modmi),如果无解则输出 impossible

输入格式

第一行包含整数 n。

接下来 n 行,每行包含一组数据 ai,bi,mi。

输出格式

输出共 n 行,每组数据输出一个整数表示一个满足条件的 xi,如果无解则输出 impossible

每组数据结果占一行,结果可能不唯一,输出任意一个满足条件的结果均可。

输出答案必须在 int 范围之内。

数据范围

1≤n≤10^5,
1≤ai,bi,mi≤2×10^9

输入样例:

2
2 3 6
4 3 5

输出样例:

impossible
-3
/*题目分析:
a*x≡b (mod m) 有解等价于存在y使得a*x-m*y=b
由此题目转化为扩展欧几里得定理的应用
我们可以用扩展欧几里得定理求出a*x-m*y=gcd(a,m)的系数
也可以看出方程有解的条件是gcd(a,m)|b
最后别忘了将解乘以gcd(a,m)|b
*/     
#include<bits/stdc++.h>
using namespace std; 
int exgcd(int a,int b,int &x,int &y)
{
    if(a==0)
    {
        x=0;y=1;
        return b;
    }
    int t=exgcd(b%a,a,x,y);
    int tx=x,ty=y;
    x=ty-b/a*tx;y=tx;
    return t;
}
int main()
{
    int n;
    cin>>n;
    int a,b,x,y,m;
    while(n--)
    {
        cin>>a>>b>>m;
        int t=exgcd(a,m,x,y);
        if(b/t*t==b) printf("%lld\n",(long long)x*(b/t)%m);//求得是关于gcd(a,b)的等式,所以最后要乘以 b/t
        else printf("impossible\n");
    }
    return 0;
}

拓展:

若关于二元方程 AX+BY=gcd(A,B)已经通过拓展欧几里得找到一组解X0,Y0,则可得到二元方程AX+BY=C的一组解X1=X0*(C/gcd(A,B)),Y1=Y0*(C/gcd(A,B)),则方程AX+BY=C的通解为X=X1+n*(B/gcd(A,B)),Y=Y1-n*(A/gcd(A,B));

若求一个数x在模n下的最小解,则可利用取余的方法来求:x=(x%n+n)%n;(前提n是正数)

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值