DNABERT: pre-trained Bidirectional Encoder Representations from Transformers model for DNA-language

本文介绍了一种新型模型DNABERT,专为基因组DNA序列设计,通过预训练和微调提升基因调控代码的理解。DNABERT在启动子预测等任务中表现出色,提高了基因组学数据分析的准确性和效率。

背景

在基因组研究中解密非编码DNA的语言是一个基础且复杂的问题。非编码DNA区域虽然不编码蛋白质,但在基因调控中扮演着至关重要的角色。基因调控代码由于存在多义性和远距离的语义关系而显得高度复杂,这对传统的信息学方法来说是一个挑战,尤其是在数据稀缺的情形下。

挑战

尽管大型语言模型如BERTGPT在文本处理领域取得了巨大成功,但它们对于处理非编码DNA序列的能力还未被充分开发。此外,这些模型的大规模训练需求也限制了它们在基因组学研究中的应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值