背景
在基因组研究中解密非编码DNA的语言是一个基础且复杂的问题。非编码DNA区域虽然不编码蛋白质,但在基因调控中扮演着至关重要的角色。基因调控代码由于存在多义性和远距离的语义关系而显得高度复杂,这对传统的信息学方法来说是一个挑战,尤其是在数据稀缺的情形下。
挑战
尽管大型语言模型如BERT和GPT在文本处理领域取得了巨大成功,但它们对于处理非编码DNA序列的能力还未被充分开发。此外,这些模型的大规模训练需求也限制了它们在基因组学研究中的应用。
本文介绍了一种新型模型DNABERT,专为基因组DNA序列设计,通过预训练和微调提升基因调控代码的理解。DNABERT在启动子预测等任务中表现出色,提高了基因组学数据分析的准确性和效率。
背景
在基因组研究中解密非编码DNA的语言是一个基础且复杂的问题。非编码DNA区域虽然不编码蛋白质,但在基因调控中扮演着至关重要的角色。基因调控代码由于存在多义性和远距离的语义关系而显得高度复杂,这对传统的信息学方法来说是一个挑战,尤其是在数据稀缺的情形下。
挑战
尽管大型语言模型如BERT和GPT在文本处理领域取得了巨大成功,但它们对于处理非编码DNA序列的能力还未被充分开发。此外,这些模型的大规模训练需求也限制了它们在基因组学研究中的应用。
1045
1227
1944
199
2804

被折叠的 条评论
为什么被折叠?