HDU-6714(dijkstra)

小 A 是社团里的工具人,有一天他的朋友给了他一个 n 个点,m 条边的正权连通无向图,要他计算所有点两两之间的最短路。

作为一个工具人,小 A 熟练掌握着 floyd 算法,设 w[i][j] 为原图中 (i,j) 之间的权值最小的边的权值,若没有边则 w[i][j]=无穷大。特别地,若i=j,则 w[i][j]=0。

Floyd 的 C++ 实现如下:

```c++
for(int k=1;k<=p;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
  w[i][j]=min(w[i][j],w[i][k]+w[k][j]);
```

当 p=n时,该代码就是我们所熟知的 floyd,然而小 A 为了让代码跑的更快点,所以想减少 p 的值。

令 Di,j为最小的非负整数 x,满足当 p=x 时,点 i 与点 j 之间的最短路被正确计算了。

现在你需要求,虽然答案不会很大,但为了显得本题像个计数题,你还是需要将答案对 998244353 取模后输出。

Input

第一行一个正整数 T(T≤30) 表示数据组数

对于每组数据:

第一行两个正整数 n,m(1≤n≤1000,m≤2000),表示点数和边数。

保证最多只有 5 组数据满足 max(n,m)>200

接下来 m 行,每行三个正整数 u,v,w 描述一条边权为 w 的边(u,v),其中 1≤w≤10^9

Output

输出 T 行,第 i 行一个非负整数表示第 i 组数据的答案

Sample Input

1
4 4
1 2 1
2 3 1
3 4 1
4 1 1

Sample Output

6

分析:一开始看到这道题我以为是道思维题,没想到他就是一道最短路的暴力题,因为dijkstra算法是单元最短路,而此题让求每两个点最短路径中最大编号的最小值,所以我们需要跑n遍最短路,用一个pre数组记录最短路上最大点的最小值,然后用一个ans相加就好,注意本题有一个坑点,就是d数组必须要开long long,否则就会一直wa,下面是代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
typedef long long ll;
typedef pair<ll,int> PII;
const int N=10000;
const int mod=998244353;
int h[N],ne[N],e[N],w[N],idx;
ll d[N];//最短路,一定要开long long
int pre[N];//最短路上最大点的最小值 
bool vis[N];
int n,m;
void add(int x,int y,int z)
{
	e[idx]=y;
	w[idx]=z;
	ne[idx]=h[x];
	h[x]=idx++;
}
void dijkstra(int x)
{
	memset(vis,false,sizeof vis);
	memset(d,0x3f,sizeof d);
	memset(pre,0,sizeof pre);//初始化最短路上最大点的最小值为0 
	d[x]=0;
	priority_queue<PII,vector<PII>,greater<PII> > q;
	q.push({0,x});
	while(q.size())
	{
		int begin=q.top().second;
		q.pop();
		if(vis[begin]) continue;
		vis[begin]=true;
		for(int i=h[begin];i!=-1;i=ne[i])
		{
			int j=e[i];
			if(d[j]>d[begin]+w[i])
			{
				d[j]=d[begin]+w[i];
				q.push({d[j],j});
				if(begin==x) continue;//没有中间点的情况看作是0使得d[i][j]更新为最短路
				pre[j]=max(pre[begin],begin);
			}
			else if(d[j]==d[begin]+w[i])//如果有多条最短路,取路径中最大标号值中较小的那个标号值 
				pre[j]=min(pre[j],max(pre[begin],begin));
		}
	}
}
int main()
{
	int T;
	cin>>T;
	while(T--)
	{
		memset(h,-1,sizeof h);
		idx=0;
		scanf("%d%d",&n,&m);
		int a,b,c;
		for(int i=1;i<=m;i++)
		{
			scanf("%d%d%d",&a,&b,&c);
			add(a,b,c);add(b,a,c);
		}
		long long ans=0;
		for(int i=1;i<=n;i++)
		{
			dijkstra(i);
			for(int j=1;j<=n;j++)
				ans=(ans+pre[j])%mod;
		}
		printf("%lld\n",ans);
	}
	return 0;
}

这道题给我的最大教训就是做题能开longlong就开longlong,不然有些错误根本就想不到,只会搞乱自己的心态。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值