小 A 是社团里的工具人,有一天他的朋友给了他一个 n 个点,m 条边的正权连通无向图,要他计算所有点两两之间的最短路。
作为一个工具人,小 A 熟练掌握着 floyd 算法,设 w[i][j] 为原图中 (i,j) 之间的权值最小的边的权值,若没有边则 w[i][j]=无穷大。特别地,若i=j,则 w[i][j]=0。
Floyd 的 C++ 实现如下:
```c++
for(int k=1;k<=p;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
w[i][j]=min(w[i][j],w[i][k]+w[k][j]);
```
当 p=n时,该代码就是我们所熟知的 floyd,然而小 A 为了让代码跑的更快点,所以想减少 p 的值。
令 Di,j为最小的非负整数 x,满足当 p=x 时,点 i 与点 j 之间的最短路被正确计算了。
现在你需要求,虽然答案不会很大,但为了显得本题像个计数题,你还是需要将答案对 998244353 取模后输出。
Input
第一行一个正整数 T(T≤30) 表示数据组数
对于每组数据:
第一行两个正整数 n,m(1≤n≤1000,m≤2000),表示点数和边数。
保证最多只有 5 组数据满足 max(n,m)>200
接下来 m 行,每行三个正整数 u,v,w 描述一条边权为 w 的边(u,v),其中 1≤w≤10^9
Output
输出 T 行,第 i 行一个非负整数表示第 i 组数据的答案
Sample Input
1
4 4
1 2 1
2 3 1
3 4 1
4 1 1
Sample Output
6
分析:一开始看到这道题我以为是道思维题,没想到他就是一道最短路的暴力题,因为dijkstra算法是单元最短路,而此题让求每两个点最短路径中最大编号的最小值,所以我们需要跑n遍最短路,用一个pre数组记录最短路上最大点的最小值,然后用一个ans相加就好,注意本题有一个坑点,就是d数组必须要开long long,否则就会一直wa,下面是代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
typedef long long ll;
typedef pair<ll,int> PII;
const int N=10000;
const int mod=998244353;
int h[N],ne[N],e[N],w[N],idx;
ll d[N];//最短路,一定要开long long
int pre[N];//最短路上最大点的最小值
bool vis[N];
int n,m;
void add(int x,int y,int z)
{
e[idx]=y;
w[idx]=z;
ne[idx]=h[x];
h[x]=idx++;
}
void dijkstra(int x)
{
memset(vis,false,sizeof vis);
memset(d,0x3f,sizeof d);
memset(pre,0,sizeof pre);//初始化最短路上最大点的最小值为0
d[x]=0;
priority_queue<PII,vector<PII>,greater<PII> > q;
q.push({0,x});
while(q.size())
{
int begin=q.top().second;
q.pop();
if(vis[begin]) continue;
vis[begin]=true;
for(int i=h[begin];i!=-1;i=ne[i])
{
int j=e[i];
if(d[j]>d[begin]+w[i])
{
d[j]=d[begin]+w[i];
q.push({d[j],j});
if(begin==x) continue;//没有中间点的情况看作是0使得d[i][j]更新为最短路
pre[j]=max(pre[begin],begin);
}
else if(d[j]==d[begin]+w[i])//如果有多条最短路,取路径中最大标号值中较小的那个标号值
pre[j]=min(pre[j],max(pre[begin],begin));
}
}
}
int main()
{
int T;
cin>>T;
while(T--)
{
memset(h,-1,sizeof h);
idx=0;
scanf("%d%d",&n,&m);
int a,b,c;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);add(b,a,c);
}
long long ans=0;
for(int i=1;i<=n;i++)
{
dijkstra(i);
for(int j=1;j<=n;j++)
ans=(ans+pre[j])%mod;
}
printf("%lld\n",ans);
}
return 0;
}
这道题给我的最大教训就是做题能开longlong就开longlong,不然有些错误根本就想不到,只会搞乱自己的心态。