离散化算是一个比较常用的工具,今天我主要说一下他的应用场景以及基本实现方法。
我们在做题时经常会遇到这样的问题,就是给你的数是很大的,但是数目比较少,就比如要求前缀和,但是给的数的坐标比较大,这个时候数组往往是开不下的,我们就需要按照原来的相对大小关系进行离散化,先给出我觉得比较好用的一个离散化代码:
//查找函数
int find(int x)
{
//alls是待离散化数组
return (lower_bound(alls.begin(),alls.end(),x)-alls.begin()+1);
}
//离散化操作
sort(alls.begin(),alls.end());//排序
alls.erase(unique(alls.begin(),alls.end()),alls.end());//去重
下面给道例题:
假定有一个无限长的数轴,数轴上每个坐标上的数都是 0。
现在,我们首先进行 n 次操作,每次操作将某一位置 x 上的数加 c。
接下来,进行 m 次询问,每个询问包含两个整数 l 和 r,你需要求出在区间 [l,r] 之间的所有数的和。
输入格式
第一行包含两个整数 n 和 m。
接下来 n 行,每行包含两个整数 x 和 c。
再接下来 m 行,每行包含两个整数 l 和 r。
输出格式
共 m 行,每行输出一个询问中所求的区间内数字和。
数据范围
−10^9≤x≤10^9,
1≤n,m≤10^5,
−10^9≤l≤r≤10^9,
−10000≤c≤10000
输入样例:
3 3
1 2
3 6
7 5
1 3
4 6
7 8
输出样例:
8
0
5
通过分析这道题的数据范围我们就能看出跨度为2*10^9,显然直接开数组实现是不太可能了,再看一下数值量,总共有10^5个数值,显然就要用到离散化了
下面是代码:
#include<bits/stdc++.h>
using namespace std;
int a[400002],sum[400002];//用于处理前缀和的数组
typedef pair<int,int> PII;
vector<int> p;//待离散化数组
vector<PII> add,query;
int find(int x)//查找操作
{
int l=0,r=p.size()-1;
while(l<r)
{
int mid=l+r>>1;
if(p[mid]>=x) r=mid;
else l=mid+1;
}
return l+1;
}
int main()
{
int n,m;
cin>>n>>m;
int l,r,x,c;
while(n--)
{
cin>>x>>c;
add.push_back(make_pair(x,c));
p.push_back(x);//将所有要待离散化的数都要存到vector数组里面
}
while(m--)
{
cin>>l>>r;
query.push_back(make_pair(l,r));
p.push_back(l);p.push_back(r);
}
sort(p.begin(),p.end());//为待离散化数组排序
p.erase(unique(p.begin(),p.end()),p.end());//去重
for(int i=0;i<add.size();i++)
{
int x=find(add[i].first);
a[x]+=add[i].second;
}
for(int i=1;i<=p.size();i++)
{
sum[i]=sum[i-1]+a[i];
}
for(int i=0;i<query.size();i++)
{
int l=find(query[i].first);
int r=find(query[i].second);
printf("%d\n",sum[r]-sum[l-1]);
}
return 0;
}