分析:一个数的质因子分解与其约数有如下关系:
所以,我们可以直接根据约数和与其质因子分解的关系来枚举每个质因子的幂次来搜索约数和等于s的数,在搜索过程中我们需要记录当前已经搜索到的数以及其约数和还有上一个幂次不为0的质因子的编号,然后我们依次往下搜索,搜索到答案就记录,但是仅仅这样搜索还是不行的,我们还需要对搜索过程进行剪枝,当我们搜索到的约数离s只差一个质因子时,我们可以直接记录答案而不用再进行向下搜索,这样会比较明显地减少代码运行的时间,具体代码如下:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<vector>
#include<algorithm>
#include<map>
#include<cmath>
#include<queue>
using namespace std;
const int N=1e6+10;
long long prime[N],ans[N],s;
bool vis[N];
int cnt,anscnt;
void init()
{
for(int i=2;i<N;i++)
{
if(!vis[i]) prime[++cnt]=i;
for(int j=1;i*prime[j]<N&&j<=cnt;j++)
{
vis[i*prime[j]]=true;
if(i%prime[j]==0) break;
}
}
}
bool is_prime(int x)
{
if(x<N) return !vis[x];
for(int i=1;prime[i]*prime[i]<=x;i++)
if(x%prime[i]==0) return false;
return true;
}
void dfs(int pos,long long now,long long nows)//pos为上一个质数的编号,now为当前约数和为nows的数
{
if(nows==s)
{
ans[++anscnt]=now;
return ;
}
if(s/nows-1>((pos==0)?1:prime[pos])&&is_prime(s/nows-1))
ans[++anscnt]=now*(s/nows-1);
for(int i=pos+1;prime[i]<=s/nows/prime[i];i++)
{
int p=prime[i];
for(int j=1+p,t=p;j<=s/nows;t*=p,j+=t)
if((s/nows)%j==0) dfs(i,now*t,nows*j);
}
}
int main()
{
init();
while(scanf("%lld",&s)!=EOF)
{
anscnt=0;
dfs(0,1,1);
printf("%d\n",anscnt);
if(anscnt)
{
sort(ans+1,ans+anscnt+1);
for(int i=1;i<=anscnt;i++)
printf("%lld ",ans[i]);
puts("");
}
}
return 0;
}