(L3-028)森森旅游(dijkstra+multiset用法)

本文介绍了一种利用Dijkstra算法解决旅游金兑换问题的方法。通过建立正反向边并进行两次Dijkstra搜索,找到从起点到任意点的最小现金成本和从任意点到终点的最小旅游金成本,进而确定最佳兑换点。文章详细阐述了算法实现过程,并给出了代码示例,涉及数据结构multiset的操作。
摘要由CSDN通过智能技术生成

题目链接:PTA | 程序设计类实验辅助教学平台

分析:这道题目由于只能在途中的某个城市兑换旅游金,而且须将剩余现金全部、一次性兑换,剩下的旅途将完全使用旅游金支付,所以我们可以先分别求出1号点到任意其他点所需要的最少现金和从任意点到n号点所需要的最少旅游金,求出来这些我们就可以直接枚举每个点作为中间点寻求最佳兑换点

从1号点到所有任意其他点的最少现金比较好求,就是直接从1号点跑一边dijkstra即可,关键是如何求出来从任意点到n号点所需要的最少旅游金,其实这个也不难想,就是我们建反边再从n跑一边dijkstra就可以求出来从任意点到n号点所需要的最少旅游金,注意这个时候的边权是旅游金。

这就要求我们建边的时候对现金建正向边,跑正向dijkstra,而对旅游金建反向边,跑反向dijkstra。

求出来1号点到任意其他点所需要的最少现金和从任意点到n号点所需要的最少旅游金之后我们就可以枚举中间点找最优解,我们可以把在所有点所需要的代价(就是1号点到这个点的现金+这个点到n号点的旅游金折合成的现金之和)存在multiset里面,然后每次对某个点进行修改时,我们都可以先删除这个点原来汇率对应的代价,然后再添加上这个点新汇率的代价,对于每次询问,最后直接输出multiset里面的第一个元素即可(multiset里面元素是从小到大排序的)

这道题目最后需要注意的就是当某个点不能到达时我们不需要考虑,直接continue即可,否则会因为值的问题而导致wa一个点

下面来说一下multiset的一些用法:

multiset与集合不同,它可以允许内部有重复元素,而且容器里面的元素是从小到大排序的
multiset<int(元素类型)>p(名称)

p.insert(a);//插入元素a

p.erase(a);//删除容器内所有元素值等于a的元素

p.erase(it(it是元素地址));//删除it对应地址的元素

p.find(a);//返回容器内元素值为a的第一个元素的地址

p.lower_bound(a);//返回容器内第一个元素值大于等于a的元素地址

p.upper_bound(a);//返回容器内第一个元素值大于a的元素地址

其他就没什么,下面上代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<vector>
#include<algorithm>
#include<map>
#include<cmath>
#include<queue>
#include<set>
using namespace std;
typedef pair<long long,long long>PII;
const int N=4e5+10;
long long ne[2][N],h[2][N],e[2][N],w[2][N],idx,d[2][N];
//d[0][i]存储从1号点到i号点最少需要的现金
//d[1][i]存储从i号点到n号点最少需要的旅游金 
bool vis[N];
long long a[N];
multiset<long long>p;
void add(int id,int x,int y,long long z)
{
	e[id][idx]=y;
	w[id][idx]=z;
	ne[id][idx]=h[id][x];
	h[id][x]=idx++;
}
void dijkstra(int id,int x)
{
	priority_queue<PII,vector<PII>,greater<PII> >q;
	for(int i=1;i<N;i++)
		d[id][i]=0x3f3f3f3f3f3f3f3f;
	memset(vis,false,sizeof vis);
	d[id][x]=0;
	q.push({0,x});
	while(!q.empty())
	{
		int begin=q.top().second;
		q.pop();
		if(vis[begin]) continue;
		vis[begin]=true;
		for(int i=h[id][begin];i!=-1;i=ne[id][i])
		{
			int j=e[id][i];
			if(d[id][j]>d[id][begin]+w[id][i])
			{
				d[id][j]=d[id][begin]+w[id][i];
				q.push({d[id][j],j});
			}
		}
	}
}
int main()
{
	int n,m,q;
	cin>>n>>m>>q;
	memset(h,-1,sizeof h);
	for(int i=1;i<=m;i++)
	{
		int u,v;
		long long x,y;
		scanf("%d%d%lld%lld",&u,&v,&x,&y);
		add(0,u,v,x);
		add(1,v,u,y);
	}
	dijkstra(0,1);
	dijkstra(1,n);
	for(int i=1;i<=n;i++)
	{
		scanf("%lld",&a[i]);
		if(d[0][i]==0x3f3f3f3f3f3f3f3f||d[1][i]==0x3f3f3f3f3f3f3f3f) continue;
		p.insert(d[0][i]+(d[1][i]+a[i]-1)/a[i]);
	}
	while(q--)
	{
		int id;
		long long val;
		scanf("%d%lld",&id,&val);
		if(d[0][id]==0x3f3f3f3f3f3f3f3f||d[1][id]==0x3f3f3f3f3f3f3f3f)
		{
			printf("%lld\n",*p.begin());
			continue;
		}
		p.erase(p.find(d[0][id]+(d[1][id]+a[id]-1)/a[id]));
		a[id]=val;
		p.insert((d[0][id]+(d[1][id]+a[id]-1)/a[id]));
		printf("%lld\n",*p.begin());
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值