题目链接:PTA | 程序设计类实验辅助教学平台
分析:这道题目由于只能在途中的某个城市兑换旅游金,而且须将剩余现金全部、一次性兑换,剩下的旅途将完全使用旅游金支付,所以我们可以先分别求出1号点到任意其他点所需要的最少现金和从任意点到n号点所需要的最少旅游金,求出来这些我们就可以直接枚举每个点作为中间点寻求最佳兑换点。
从1号点到所有任意其他点的最少现金比较好求,就是直接从1号点跑一边dijkstra即可,关键是如何求出来从任意点到n号点所需要的最少旅游金,其实这个也不难想,就是我们建反边再从n跑一边dijkstra就可以求出来从任意点到n号点所需要的最少旅游金,注意这个时候的边权是旅游金。
这就要求我们建边的时候对现金建正向边,跑正向dijkstra,而对旅游金建反向边,跑反向dijkstra。
求出来1号点到任意其他点所需要的最少现金和从任意点到n号点所需要的最少旅游金之后我们就可以枚举中间点找最优解,我们可以把在所有点所需要的代价(就是1号点到这个点的现金+这个点到n号点的旅游金折合成的现金之和)存在multiset里面,然后每次对某个点进行修改时,我们都可以先删除这个点原来汇率对应的代价,然后再添加上这个点新汇率的代价,对于每次询问,最后直接输出multiset里面的第一个元素即可(multiset里面元素是从小到大排序的)
这道题目最后需要注意的就是当某个点不能到达时我们不需要考虑,直接continue即可,否则会因为值的问题而导致wa一个点
下面来说一下multiset的一些用法:
multiset与集合不同,它可以允许内部有重复元素,而且容器里面的元素是从小到大排序的
multiset<int(元素类型)>p(名称)
p.insert(a);//插入元素a
p.erase(a);//删除容器内所有元素值等于a的元素
p.erase(it(it是元素地址));//删除it对应地址的元素
p.find(a);//返回容器内元素值为a的第一个元素的地址
p.lower_bound(a);//返回容器内第一个元素值大于等于a的元素地址
p.upper_bound(a);//返回容器内第一个元素值大于a的元素地址
其他就没什么,下面上代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<vector>
#include<algorithm>
#include<map>
#include<cmath>
#include<queue>
#include<set>
using namespace std;
typedef pair<long long,long long>PII;
const int N=4e5+10;
long long ne[2][N],h[2][N],e[2][N],w[2][N],idx,d[2][N];
//d[0][i]存储从1号点到i号点最少需要的现金
//d[1][i]存储从i号点到n号点最少需要的旅游金
bool vis[N];
long long a[N];
multiset<long long>p;
void add(int id,int x,int y,long long z)
{
e[id][idx]=y;
w[id][idx]=z;
ne[id][idx]=h[id][x];
h[id][x]=idx++;
}
void dijkstra(int id,int x)
{
priority_queue<PII,vector<PII>,greater<PII> >q;
for(int i=1;i<N;i++)
d[id][i]=0x3f3f3f3f3f3f3f3f;
memset(vis,false,sizeof vis);
d[id][x]=0;
q.push({0,x});
while(!q.empty())
{
int begin=q.top().second;
q.pop();
if(vis[begin]) continue;
vis[begin]=true;
for(int i=h[id][begin];i!=-1;i=ne[id][i])
{
int j=e[id][i];
if(d[id][j]>d[id][begin]+w[id][i])
{
d[id][j]=d[id][begin]+w[id][i];
q.push({d[id][j],j});
}
}
}
}
int main()
{
int n,m,q;
cin>>n>>m>>q;
memset(h,-1,sizeof h);
for(int i=1;i<=m;i++)
{
int u,v;
long long x,y;
scanf("%d%d%lld%lld",&u,&v,&x,&y);
add(0,u,v,x);
add(1,v,u,y);
}
dijkstra(0,1);
dijkstra(1,n);
for(int i=1;i<=n;i++)
{
scanf("%lld",&a[i]);
if(d[0][i]==0x3f3f3f3f3f3f3f3f||d[1][i]==0x3f3f3f3f3f3f3f3f) continue;
p.insert(d[0][i]+(d[1][i]+a[i]-1)/a[i]);
}
while(q--)
{
int id;
long long val;
scanf("%d%lld",&id,&val);
if(d[0][id]==0x3f3f3f3f3f3f3f3f||d[1][id]==0x3f3f3f3f3f3f3f3f)
{
printf("%lld\n",*p.begin());
continue;
}
p.erase(p.find(d[0][id]+(d[1][id]+a[id]-1)/a[id]));
a[id]=val;
p.insert((d[0][id]+(d[1][id]+a[id]-1)/a[id]));
printf("%lld\n",*p.begin());
}
return 0;
}