题目链接:“蓝桥杯”练习系统
输入样例1:
2 3
..X
.X.
输出样例1:
4
输入样例2:
3 3
..X
.X.
...
输出样例2:
16
测试结果如下:
分析:我一开始看这道题以为是状压DP,但是看了眼数据范围发现n和m是100的,没办法用一个long long型整数存1<<100,所以就放弃了这个思路,但是这个数据范围也不太想是一般的深搜,肯定会超时,于是就想写一个记忆化搜索,算了算复杂度还是可以的,思路如下:
我们的思路是枚举每一列摆放的积木数,一个比较容易发现的规律就是满足题意的方案中从左往右每一列所摆放的积木数一定是先递增后递减的,否则就会出现波谷,波谷就意味着同一高度的积木块必然存在不相邻的情况,就是利用这个性质我们可以进行搜索,方法如下
设f[i][j][0]表示当前到达第i列且第i-1列所摆放积木高度为j,当前为非递降状态的方案数,f[i][j][1]表示当前到达第i列且第i-1列所摆放积木高度为j,当前为非递增状态的方案数,非递降状态也就是说当前列的摆放的积木数一定大于等于上一列所摆放的积木数,同理非递增状态就是说当前列的摆放的积木数一定小于等于上一列所摆放的积木数,首先我们需要预处理出来每一列所能摆放的积木的最大高度,这在我们搜索函数中是直接用的,这个也比较容易,在这里就不多说了,详情见代码。
下面我们来看看怎么写搜索函数,这个时候我们来分状态讨论:假如上一列枚举的状态是递增的,那么我们当前列可以选择让其继续递增,也可以选择让其递减,如果要是继续递增的话,我们当前列摆放的积木块数目就是要大于等于上一列所摆放的积木块数,小于等于当前列所能够摆放的最多积木块数,然后进行搜索就行了,那如果要是选择让积木块数递减呢?是不是只要选择让当前枚举的积木块数小于等于上一列摆放的积木块数和当前列最多摆放的积木块数的最小值呢?这样看似是对的,其实不对,因为这样我们会造成答案重复计算,假如当前列所能摆放的积木数大于上一列所摆放的积木数,如果我们选择当前列摆放的积木数与上一列摆放的积木数是相同的,那么这种情况算是递增还是递减呢?要如果两种情况都考虑的话必然会使得答案重复计算造成错误,所以我们必须人为地把他归结为一种情况中,我这里是归结到递增的情况中,所以如果我们要让积木数状态由非递降变为非递增,当前列所摆放的积木数要小于上一列所摆放的积木数,这样才能保证不重复,上一列状态为递增的状态已经讨论完了,下面我们来看一下上一列状态为递降的情况,这一种情况比较容易考虑,我们之后列所摆放的积木块数都是递降的,但是是不是跟上面积木数状态由非递降变为非递增时一样,当前列所选取的积木数一定要小于上一列所摆放的积木数呢?其实不是,因为我们保证了当前状态是非递增的,所以已经不会与递增状态有重复情况,也就是说我们当前所选择的积木数是可以与上一列所选取的积木数相同的,但前提是当前列所能摆放的最大积木块数大于等于上一列所摆放的积木块数,这就是完整的搜索过程了,最后直接用记忆化搜索实现就行了
分析到这这道题就结束了,下面是代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<cstring>
using namespace std;
const int N=303,mod=1e9+7;
int f[N][N][2];
//f[i][j][0]表示当前到达第i列且第i-1列所选高度为j,当前为非递降状态的方案数
//f[i][j][1]表示当前到达第i列且第i-1列所选高度为j,当前为非递增状态的方案数
char s[N][N];
int h[N];//第i列的高度
int n,m;
int dfs(int now,int lasth,int st)
{
if(now>m) return 1;
if(f[now][lasth][st]!=-1) return f[now][lasth][st];
int ans=0;
if(st==0) //当前为非递降状态
{
for(int i=lasth;i<=h[now];i++)
ans=(ans+dfs(now+1,i,0))%mod;
for(int i=min(lasth-1,h[now]);i>=0;i--)//非递降状态转为非递增状态
ans=(ans+dfs(now+1,i,1))%mod;
}
else//当前为非递增状态
{
for(int i=min(lasth,h[now]);i>=0;i--)
ans=(ans+dfs(now+1,i,1))%mod;
}
return f[now][lasth][st]=ans;
}
int main()
{
cin>>n>>m;
memset(f,-1,sizeof f);
for(int i=1;i<=n;i++)
scanf("%s",s[i]+1);
for(int i=1;i<=m;i++)
if(s[n][i]=='.') h[i]=1;
for(int i=n-1;i>=1;i--)
for(int j=1;j<=m;j++)
if(s[i][j]=='.'&&h[j]==n-i) h[j]++;
cout<<dfs(1,0,0)<<endl;
return 0;
}