(2021牛客多校二)F.Girlfriend(计算几何)

这篇博客详细解释了如何通过三维空间中四个点和两个比例约束,求解P1和P2两点形成轨迹的交集体积,涉及球面方程、体积计算及两球相交公式。适合理解空间几何与信息技术应用的读者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

样例输入:

1
1 0 0
3 0 0
2 0 0
4 0 0
3 3

样例输出:

0.262

简化题意:给你三维空间中的四个点A,B,C,D,然后给你一个K1和K2,一个点P1到A的距离不小于P1到B的距离的K1倍,一个点P2到C的距离不小于P2到D的距离的K2倍,求P1点所形成的轨迹与P2点所形成的轨迹相交的体积。

以P1点的轨迹为例:设P1(x,y,z),则有

(x-xA)*(x-xA)+(y-yA)*(y-yA)+(z-zA)*(z-zA)>=k*k*((x-xB)*(x-xB)+(y-yB)*(y-yB)+(z-zB)*(z-zB))

经过对这个等式化简不难发现这是一个球,化成标准形式很容易得到圆心坐标和半径,然后我们只需要待入计算几何的模板即可求得两球相交体积

下面是代码:

#include<iostream>
#include<cstdio>
#include<string>
#include<ctime>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<stack>
#include<climits>
#include<queue>
#include<map>
#include<set>
#include<sstream>
#include<cassert>
#include<bitset>
#include<list>
#include<unordered_map>
#define double long double
#define lowbit(x) (x&-x)
using namespace std;
typedef long long LL;
typedef unsigned long long ull;
template<typename T>
inline void read(T &x)
{
	T f=1;x=0;
	char ch=getchar();
	while(0==isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
	while(0!=isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
	x*=f;
}
template<typename T>
inline void write(T x)
{
	if(x<0){x=~(x-1);putchar('-');}
    if(x>9)write(x/10);
    putchar(x%10+'0');
}
const int inf=0x3f3f3f3f;
const int N=1e6+100;
const double pi=acos(-1);

double pow2(double x){return x*x;}
  
double pow3(double x){return x*x*x;}
  
double dis(double x1,double y1,double z1,double x2,double y2,double z2)
{
    return pow2(x1-x2)+pow2(y1-y2)+pow2(z1-z2);
}
  
double cos(double a,double b,double c){return (b*b+c*c-a*a)/(2*b*c);}
  
double cap(double r,double h){return pi*(r*3-h)*h*h/3;}
  
//2球体积交
double sphere_intersect(double x1,double y1,double z1,double r1,double x2,double y2,double z2,double r2)
{
    double d=dis(x1,y1,z1,x2,y2,z2);
    //相离
    if(d>=pow2(r1+r2))return 0;
    //包含
    if(d<=pow2(r1-r2))return pow3(min(r1,r2))*4*pi/3;
    //相交
    double h1=r1-r1*cos(r2,r1,sqrt(d)),h2=r2-r2*cos(r1,r2,sqrt(d));
    return cap(r1,h1)+cap(r2,h2);
}
  
//2球体积并
double sphere_union(double x1,double y1,double z1,double r1,double x2,double y2,double z2,double r2)
{
    double d=dis(x1,y1,z1,x2,y2,z2);
    //相离
    if(d>=pow2(r1+r2))return (pow3(r1)+pow3(r2))*4*pi/3;
    //包含
    if(d<=pow2(r1-r2))return pow3(max(r1,r2))*4*pi/3;
    //相交
    double h1=r1+r1*cos(r2,r1,sqrt(d)),h2=r2+r2*cos(r1,r2,sqrt(d));
    return cap(r1,h1)+cap(r2,h2);
}

void solve()
{
	double x[5],y[5],z[5];
    double x1, y1, z1, r1, x2, y2, z2, r2;
	for(int i=1;i<=4;i++) cin>>x[i]>>y[i]>>z[i];
	double k1,k2;
	cin>>k1>>k2;
	x1 = ((k1*k1*x[2]-x[1])/(k1*k1-1));
	y1 = ((k1*k1*y[2]-y[1])/(k1*k1-1));
	z1 = ((k1*k1*z[2]-z[1])/(k1*k1-1));
	r1 = (x1*x1+y1*y1+z1*z1-(k1*k1*(x[2]*x[2]+y[2]*y[2]+z[2]*z[2]))/(k1*k1-1)+(x[1]*x[1]+y[1]*y[1]+z[1]*z[1])/(k1*k1-1));
	r1 = sqrt(r1);
	k1 = k2;
	x[1] = x[3];y[1] = y[3];z[1] = z[3];
	x[2] = x[4];z[2] = z[4];y[2] = y[4];
	x2 = ((k1*k1*x[2]-x[1])/(k1*k1-1));
	y2 = ((k1*k1*y[2]-y[1])/(k1*k1-1));
	z2 = ((k1*k1*z[2]-z[1])/(k1*k1-1));
	r2 = (x2*x2+y2*y2+z2*z2-(k1*k1*(x[2]*x[2]+y[2]*y[2]+z[2]*z[2])/(k1*k1-1))+(x[1]*x[1]+y[1]*y[1]+z[1]*z[1])/(k1*k1-1));
	r2 = sqrt(r2);
	double v = sphere_intersect(x1, y1, z1, r1, x2, y2, z2, r2);
	printf("%Lf\n", v);
}
int main(){
	int _;
	scanf("%d",&_);
	while(_--) solve();
	return 0;
}

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
内容概要:PT500PLUS平行轴齿轮箱故障测试台是由瓦伦尼安(VALENIAN)Machine Vibration & Gearbox Simulator(机械振动-齿轮箱模拟器)开发的专业机械故障仿真测试设备。该测试台旨在模拟和研究转子、齿轮传动、轴承及电机系统中的多种常见故障,包括但不限于轴不对中、转子不平衡、机械松动、轴承故障、齿轮故障(如点蚀、磨损、断齿等)以及电机故障(如转子不平衡、轴承故障、匝间短路等)。测试台配备有先进的传感器和数据采集系统,能够实时采集并分析振动、噪声、转速、扭矩等参数,提供多通道同步信号采集与频谱分析功能。此外,测试台还配备了10寸触摸屏、PLC智能控制系统和急停按钮,确保操作简便和安全。 适用人群:机械工程专业师生、科研人员以及从事机械故障诊断和维护的技术人员。 使用场景及目标:①用于高校和科研机构的教学和研究,帮助学生和研究人员深入理解机械故障的机理;②为企业提供故障诊断和预防性维护的解决方案,提高设备可靠性和运行效率;③通过模拟真实工况下的故障,进行轴承寿命预测性试验,研究轴承故障机制与轴承载荷、转速、振动、温度之间的关系。 其他说明:测试台结构紧凑,模块化设计,便于移动和维护。它不仅支持多种传感器的安装和数据采集,还提供了丰富的分析软件功能,如FFT频谱分析、轴心轨迹图、小波分析等,支持数据导出和次开发,适用于各种复杂的研究和应用需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值