题目链接:登录—专业IT笔试面试备考平台_牛客网
题目:
样例输入:
2
3
5
样例输出:
4
2 4 1 3
5
3 2 5 1 4
题意:多组输入,每组输入给出一个m,让我们构造一个长度不大于100的排列,使得这个排列中最长上升子序列的个数为m,其中m的范围是1e9.
分析:我们从二进制上进行考虑,比如m是45,二进制表达式是101101,我们可以先尝试满足其最高位上的要求,也就是2^5,那么我们可以先构造基础排列 2 1 4 3 6 5 8 7 10 9,基础排列中最长上升子序列的长度是5,然后我们再看看第三位上的1应该如何构造,其中第三位上的1的权值是2^3,我们就在基础排列第2*3=6位之后添加一个比较大的数x(比如是100),但是这样由x组成的最长上升子序列长度并不是5,那么我们发现前面有4个比x小的数,那么当前位需要添加2个数才能够构成长度为5的最长上升子序列,所以我们不妨添加99和100,再看第四位上的1,权值是2^2,我们在基础排列第2*2=4位之后添加若干大数,使得其构成一个长度为5的最长上升子序列,那么由于前面有2个比其小的数,而后面有2个数比其大,所以我们只需要构造一个数即可,不妨按顺序放入98,那么接下来我们来看最低位上的1,权值是2^0,我们应该在基础排列第0位后面添加一个大数,但是后面才填过3个比当前数大的数,所以此处我们应该放两个数才能构成一个长度为5的最长上升子序列,按照顺序的话应该就是96 97,那么序列就变为96 97 2 1 4 3 98 6 5 99 100 8 7 10 9。
就是按照上面的思路进行构造,如果m的二进制位数为len那么所需要的最大位数就是3*(len-1),因为我们构造的最长上升子序列的长度是len-1,注意构造完序列后需要离散化。
细节见代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<map>
#include<queue>
#include<vector>
#include<cmath>
using namespace std;
const int N=103;
vector<int> alls;
int find(int x)
{
return lower_bound(alls.begin(),alls.end(),x)-alls.begin()+1;
}
int main()
{
int T,m;
scanf("%d",&T);
while(T--)
{
vector<int> a;
a.reserve(100);
alls.clear();
scanf("%d",&m);
int n=0,t=m;
while(t)
{
t/=2;n++;
}
if(n==1)
{
printf("1\n1\n");
continue;
}
//构造的最长上升子序列长度为n-1
int cnt=100,tt=0;//tt记录后面已经插入的特殊数的个数
for(int i=n-2;i>=0;i--)
{
a.push_back(2*i+1);
a.push_back(2*i+2);
if(m>>i&1)
{
int len=n-1-i-tt;
for(int j=cnt;j>cnt-len;j--)
a.push_back(j);
tt+=len;cnt=cnt-len;
}
}
alls=a;
sort(alls.begin(),alls.end());
printf("%d\n",a.size());
for(int i=0;i<a.size();i++)
a[i]=find(a[i]);
for(int i=a.size()-1;i>=0;i--)
printf("%d ",a[i]);
puts("");
}
return 0;
}