样例输入:
1
1 2
样例输出:
3
1 2
3 5
7 11
分析:这种题目显然是概率DP,通常的状态表示就是设f[i]表示从高度为i的位置爬到树顶所需要的时间期望值,那么答案就是f[0],初始值的话就是f[n]=0。
那么根据题意会有f[i]=p[i+1]*(1+f[0])+(1-p[i+1])*(1+f[i+1])
两边同时减去f[0]得f[i]-f[0]=1+(1-p[i+1])*(f[i+1]-f[0])
令g[i]=f[i]-f[0]得g[i]=(1-p[i+1])*g[i+1]
即g[i+1]=g[i]/(1-p[i+1])
g[0]=f[0]-f[0]=0
g[n]=f[n]-f[0]=0-f[0]=-f[0],那么我们的答案就是-g[n]
for循环一遍递推即可得到答案
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
#include<queue>
using namespace std;
const int N=2e5+10,mod=998244353;
typedef long long ll;
ll p[N];
ll f[N];//f[i]表示从高度为i的位置爬到树顶所需要的时间期望值
ll g[N];//g[i]=f[i]-f[0]
ll qpow(ll a,ll b,ll mod)
{
ll ans=1;
while(b)
{
if(b&1) ans=ans*a%mod;
a=a*a%mod;
b>>=1;
}
return ans;
}
int main()
{
int n;
cin>>n;
for(int i=1;i<=n;i++)
{
ll x,y;
scanf("%lld%lld",&x,&y);
p[i]=x*qpow(y,mod-2,mod)%mod;
}
for(int i=1;i<=n;i++)
{
g[i]=(g[i-1]-1)*qpow(1-p[i],mod-2,mod)%mod;
g[i]=(g[i]+mod)%mod;
}
f[0]=((-g[n])%mod+mod)%mod;
printf("%lld\n",f[0]);
return 0;
}