(蓝桥真题)爬树的甲壳虫(概率DP)

该文章介绍了一种使用概率动态规划(概率DP)解决爬树问题的方法,通过状态转移方程f[i]=p[i+1]*(1+f[0])+(1-p[i+1])*(1+f[i+1]),并定义g[i]=f[i]-f[0]简化计算,最后得出答案-g[n]。代码示例展示了如何用C++实现这个算法。
摘要由CSDN通过智能技术生成

 样例输入:

1
1 2

样例输出:

3
1 2
3 5
7 11

分析:这种题目显然是概率DP,通常的状态表示就是设f[i]表示从高度为i的位置爬到树顶所需要的时间期望值,那么答案就是f[0],初始值的话就是f[n]=0

那么根据题意会有f[i]=p[i+1]*(1+f[0])+(1-p[i+1])*(1+f[i+1])

两边同时减去f[0]得f[i]-f[0]=1+(1-p[i+1])*(f[i+1]-f[0])

g[i]=f[i]-f[0]得g[i]=(1-p[i+1])*g[i+1]

g[i+1]=g[i]/(1-p[i+1])

g[0]=f[0]-f[0]=0

g[n]=f[n]-f[0]=0-f[0]=-f[0],那么我们的答案就是-g[n]

for循环一遍递推即可得到答案

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
#include<queue>
using namespace std;
const int N=2e5+10,mod=998244353;
typedef long long ll;
ll p[N];
ll f[N];//f[i]表示从高度为i的位置爬到树顶所需要的时间期望值
ll g[N];//g[i]=f[i]-f[0]
ll qpow(ll a,ll b,ll mod)
{
	ll ans=1;
	while(b)
	{
		if(b&1) ans=ans*a%mod;
		a=a*a%mod;
		b>>=1;
	}
	return ans;
}
int main()
{
	int n;
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		ll x,y;
		scanf("%lld%lld",&x,&y);
		p[i]=x*qpow(y,mod-2,mod)%mod;
	}
	for(int i=1;i<=n;i++)
	{
		g[i]=(g[i-1]-1)*qpow(1-p[i],mod-2,mod)%mod;
		g[i]=(g[i]+mod)%mod;
	}
	f[0]=((-g[n])%mod+mod)%mod;
	printf("%lld\n",f[0]);
	return 0;
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值