(蓝桥真题)网络分析(并查集+树上差分)

20 篇文章 0 订阅
10 篇文章 0 订阅
该文介绍了一种基于并查集和树上差分的算法解决网络分析问题。在处理合并与信息传递的过程中,通过创建新的节点作为合并后的连通块代表,确保了节点值的正确更新。通过DFS遍历以根节点为起点的子树,实现所有节点值的更新。
摘要由CSDN通过智能技术生成

题目链接:P8710 [蓝桥杯 2020 省 AB1] 网络分析 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

 样例输入:

4 8
1 1 2
2 1 10
2 3 5
1 4 1
2 2 2
1 1 2
1 2 4
2 2 1

样例输出:

13 13 5 3

分析:首先看到这道题我们的第一思路就能跟并查集联想到一块,但关键是因为合并的顺序早晚不同,所以我们没办法只根据最后每个节点所在的连通块来确定这个节点的值是多少,但是对于过程中的某个状态,假如我们要对某个连通块中的某个点发送一条大小为t的信息,那么我就可以只对该连通块的代表节点的权值+t,对于这样的关系我们也可以看成是一棵树,如果我们能保证代表节点是这颗树的根节点,那么我们在最后就可以直接对树进行一边向下dfs,对于当前节点值为val的节点,那么以该点为根的子树中的所有点也要加上val,按照这个思路我们就可以完成所有节点值的更新。通过对这种思路的分析不难发现,越是比较晚加入的节点越能成为连通块的代表节点,我们能够发现一个问题,就是假如我们现在要合并两个连通块,因为他们是同时合并的,所以无论选谁的代表节点作为新连通块的代表节点都不太合适,所以我们可以新开一个节点来作为两个节点的代表节点,这样就能够保证两个连通块的对等关系。因为我们每次要想修改整个连通块的值都是对根节点的权值进行修改,那么这个思想就是利用树上差分的思想,就是要想对一棵子树中的所有节点进行修改,那我们只需要修改这棵子树的根节点即可。细节见代码:

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
#include<queue>
using namespace std;
const int N=5e5+10;
int h[N],e[N],ne[N],idx;
int fu[N],val[N];
void add(int x,int y)
{
	e[idx]=y;
	ne[idx]=h[x];
	h[x]=idx++;
}
int find(int x)
{
	if(x!=fu[x]) return fu[x]=find(fu[x]);
}
void dfs(int x,int v)
{
	val[x]+=v;
	for(int i=h[x];i!=-1;i=ne[i])
	{
		int j=e[i];
		dfs(j,val[x]);
	}
}
int main()
{
	int n,m;
	cin>>n>>m;
	for(int i=1;i<=2*n;i++)
		fu[i]=i,h[i]=-1;
	int now=n+1;
	while(m--)
	{
		int op,a,b;
		scanf("%d",&op);
		if(op==1)
		{
			scanf("%d%d",&a,&b);
			int fx=find(a),fy=find(b);
			if(fx==fy) continue;
			++now;
			add(now,fx);add(now,fy);
			fu[fx]=now;fu[fy]=now;
		}
		else
		{
			scanf("%d%d",&a,&b);
			val[find(a)]+=b;
		}
	}
	for(int i=n+1;i<=now;i++)
		if(fu[i]==i) dfs(i,0);
	for(int i=1;i<=n;i++)
		printf("%d ",val[i]);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值