1. Google矩阵
假设有A,B,C,D,E五个网页,其中
1)A网页有链接指向B,C,D
2)B网页有链接指向A,E
3)C网页有链接指向A,E
4)D网页有链接指向C
5)E网页有链接指向A,C
请写出这个网页链接结构的Google矩阵
这样,我们就得到了Google的初始矩阵L(也有资料叫这转移矩阵)。
- PageRank的求解
得到初始矩阵后,我们就可以得到PR值,当只有a概率的用户会点击网页链接,剩下(1-a)概率的用户会跳到无关的页面上去,而访问的页面恰好是这5个页面中A的概率只有(1-a)/5(a是阻尼系数,Google取a等于0.85),所以真正的Google矩阵
于是得到q(n)=G*q(n-1),特征向量q的初始值为值为1的5*1矩阵,直到q(n)=q(n-1),q(n)就是PageRank的值。
编程实现此PageRank的计算(Java)
package com.zzg.math;
public class PageRank {
/**
* 矩阵g乘以矩阵p
* @param g
* @param p
* @return 矩阵g乘以矩阵p的结果矩阵
*/
private static double[] multiMatrix(double[][] g, double[] p){
double[] multiResult = new double[p.length];
for(int i=0; i<g.length; i++){
double rowResult = 0.0f;
for(int j=0; j<g.length; j++){
rowResult+=g[i][j]*p[j];
}
multiResult[i] = rowResult;
}
return multiResult;
}
/**
* 根据初始矩阵计算真正的Google矩阵
* @param 初始矩阵
* @param weight
* @param oneMatrix
* @return 真正的Google矩阵
*/
private static void getGoogleMatrix(double[][] transitionMatrix, double weight){
//transitionMatrix*weight
for(int i=0; i<transitionMatrix.length; i++){
for(int j=0; j<transitionMatrix.length; j++){
transitionMatrix[i][j] *= weight;
transitionMatrix[i][j] += (1-weight)/transitionMatrix.length;
}
}
}
/**
* 如果pageRankN=pageRankN_1,返回true;否则,返回false
* @param pageRankN
* @param pageRankN_1
* @return
*/
private static boolean compareMatrix(double[] pageRankN, double[] pageRankN_1){
for(int i=0; i<pageRankN.length; i++){
if(pageRankN[i]-pageRankN_1[i]>0.0000001){
return false;
}
}
return true;
}
/**
*
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
double[][] transitionMatrix={{0,1/2f,1/2f,0,1/2f},{1/3f,0,0,0,0},{1/3f,0,0,1f,1/2f},{1/3f,0,0,0,0},{0,1/2f,1/2f,0,0}};//初始矩阵
double[] p={1,1,1,1,1};
double weight = 0.85f; //a的值
//真正的Google矩阵
getGoogleMatrix(transitionMatrix, weight);
//输出看一下
// for(int i=0; i<transitionMatrix.length; i++){
// for(int j=0; j<transitionMatrix.length; j++){
// System.out.print(transitionMatrix[i][j]);
// System.out.print(" ");
// }
// System.out.println();
// }
//q(n)=G*q(n-1),如果q(n)=q(n-1),q(n)是PageRank
double[] pageRank = multiMatrix(transitionMatrix, p);
while(!compareMatrix(pageRank, p)){
p = pageRank;
pageRank = multiMatrix(transitionMatrix, p);
}
for(int i=0; i<pageRank.length; i++){
System.out.println(pageRank[i]);
}
}
}
输出结果:
1.4308440997406415
0.5554058455846969
1.4542437907845167
0.5554058455846969
1.0041011330680263